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Ma tn ouyypadn Tou mapdvtog apBpou, amovepnBnke otov Neo Epsuvntn
Navayuitn Turdndo to BpaBeio Néou Epeuvntn «MatBaiog KapAautngy katd
™ &1dpke1a tou 10 MeBvoug uvedpiou yvia tnv ‘Epeuva otic Metagpopeg (ICTR 2021)

A Discrete Differential Dynamic Programming
Approach for GLOSA Systems with Stochastic
Signal Switching Times

Panagiotis Typaldos’, Vasileios Volakakis', Markos Papageorgiou', loannis Papamichail’

ABSTRACT

A stochastic optimal control problem was recently proposed to
address the GLOSA (Green Light Optimal Speed Advisory) problem
in cases where the next switching time is decided in real time and
is therefore uncertain in advance. The corresponding numerical
solution via SDP (Stochastic Dynamic Programming) calls for sub-
stantial computational time, which excludes problem solution in
the vehicle's computer in real time. This work considers the same
stochastic problem of optimal trajectory specification for vehicles
approaching a signalized junction with traffic signals operating in
real-time (adaptive) mode, due to which the next switching time is
stochastic. However, a modified version of Dynamic Programming,
known as Discrete Differential Dynamic Programming (DDDP), is
used for numerical solution of the stochastic optimal control
problem. It is demonstrated that the DDDP algorithm achieves
results equivalent to those obtained with the ordinary SDP algorithm,
albeit with significantly better performance in terms of computational
time.

Keywords: GLOSA, Stochastic Dynamic Programming, Discrete Dif-
ferential Dynamic Programming (DDDP), Traffic Light Advisory,
Speed Advisory.

NMEPIAHYH

Mpdopata npotdBnke éva npdépAnpa otoxactukoU BéAtiatou eNéyxou
yia to npdBanpa GLOSA (Green Light Optimal Speed Advisory) oe
nepINtwaels 6nou o xpdévos tns enduevns evanfayns chpatos ano-
Qacidetal oe Npaypatiké xpovo kal enopévws eival apéBaios ek Twv
npotépwv. H avtiotoixn apiBunukh Alon péow IAM (Itoxaatkol
Auvapikot Mpoypappatopod) anartei au€npévo unooyioukd xp6vo,
o0 onoios anokdeiel tn AUoN Tou NpofAnpatos otov unoAoyioth Tou
oxnpatos o€ npaydatké xpévo. Ltn napouoa epyacia eGetdetal 10
i610 otoxaouké npéPAnua npoadiopiopol BéAtiotns Tpoxids yia
oxnpata nou npooeyyi¢ouv pia onpatodotnpévn Siactavpwon pe
oghpata kukAogopias nou Aeitoupyolv o€ Npaypatiké xpévo, nou
onpaivel 6t o enépevos xpévos evanayns eival otoxacukds. Aatéoo,
Hia tpononoinpévn ekdoxn tou Auvapikou Mpoypappatcpoy, yvwotn
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ws Aiakprukos Alagopikés Auvapikos Mpoypappatopds (AAAM), xpn-
glgonoleital yia tnv apiBunukh eniduon tou otoxactikoU npofAnpatos
BéAuotou eAéyxou. Aianiotwvetal 6t o afyépiBuos AAAT enituyxdvel
anoteféopata IcodUvapa pe ekeiva nou AapPdvovtal Pe tov kAaoiko
afyépiBuo LAM, aAAd pe onpavukd kaddtepn anédoon 6cov agopd
ToV UnoAoyIoTIKG Xpovo.

Né€ets-Kedid: GLOSA, Xroxaotwsds Auvauwsds lMpoypauuatouds,
Makpuds Aagopusds Auvauusds Mpoypauuatiauds (AAAN), Ynébeén
Qwtewvou Enuatobotn, Ynébe&n Taxutntas.

1. INTRODUCTION

In view of cheap energy resources shortage and excessive envi-
ronmental pollution, it is essential for transportation systems to
operate with increased fuel efficiency. In the case of road vehicles,
fuel efficiency relates to economic aspects, as fuel economy
means fewer expenses for the driver; but also, to the protection of
the environmentin an era of climate crisis. To this end, considerable
efforts in the development and deployment of efficient intelligent
transportation systems (including real-time traffic signals) lead
to reduced congestion and fuel consumption.

Traffic signals guarantee, in the first place, the safe crossing of
vehicles at urban junctions in cities around the world. Clearly,
enforcing safety via traffic lights implies that some vehicles will
have to stop in front of a red light and then accelerate after the
traffic light switching to green, something that affects the fuel
consumption of concerned vehicles. To reduce the resulting vehicle
delays and number of stops, several algorithms have been proposed
and deployed over the past decades, aiming at optimizing the
traffic signals operation (Hounsell and Mc-Donald, 2001; Papageorgiou
etal., 2003). In fact, fuel consumption is increasingly considered
as an optimization or evaluation criterion while developing and
deploying signal control systems (Jamshidnejad et al., 2017).

Fixed-time signal plans are derived offline for respective times of
day (e.g., morning peak period, off-peak period, etc.) by use of ap-
propriate optimization tools, based on historical constant demands;
and are applied without deviations. This implies that switching
times of the traffic lights are always known in advance.

In contrast, real-time (or traffic-responsive or adaptive) signal
control strategies make use of real-time measurements to calculate
in real time suitable signal settings. Depending on the employed
signal control strategy, the control update period may range from
one second to one signal cycle. Clearly, for real-time signals, the
next switching time is not known before the switching decision
has been actually made.

Consider a vehicle approaching a red traffic light at a given speed.
A common dilemma is whether it should maintain its speed, at the
risk of having to stop if the traffic light is still red at arrival; or
whether it should decelerate, as long as the traffic light is red, at
some uncertain pace. This dilemma of vehicle movement when
facing a red traffic signal may be addressed by appropriately
designed systems. With recent and emerging advances in vehicle
communications, the current state and timing of a traffic signal
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can be transmitted to equipped vehicles (or apps therein) to enable
sensible approaching speed decisions. Based on this information,
it is possible to guide the driver (or an automated vehicle) all the
way to the traffic light by giving speed advice, which ensures that
the vehicle will cross the traffic signal at green and with minimum
fuel consumption and emissions. Systems (or apps) optimizing
the vehicle approach to traffic lights are often referred to as Green
Light Optimal Speed Advisory (GLOSA) systems (Stahlmann et al.,
2016).

In the case of fixed signals and hence prior knowledge of the next
switching time, a corresponding message is broadcasted by the
signal controller. Under these conditions, the problem of how to
optimize the approach to traffic signals has been addressed in
different ways. Rule-based algorithms have been proposed in
various works to produce advisory speeds for vehicles approaching
traffic signals, so as to reduce fuel consumption and emissions
(Katsaros et al., 2011; Sanchez et al., 2006; Ma et al., 2018).
Optimal control approaches, considering explicitly the vehicle kine-
matics, are, by their nature, more pertinent in producing fuel-
optimal speed profiles (Lawitzky et al., 2013; Typaldos et al.,
2020a).

The situation becomes more complicated when real-time signals
with very short (e.g., second-by-second) control update periods
are present, in which case exact prior knowledge of the next
switching time is not available. In this case, the best available
knowledge can be presented as an estimate (Koukoumidis et al.,
2011) or as a probabilistic distribution for the next switching time
within a short-term future time-window; such a distribution may
be obtained by use of statistics from previous signal operation
(Mahler and Vahidi, 2012; Lawitzky et al., 2013).

In (Typaldos et al., 2020a), the problem of producing fuel-optimal
vehicle trajectories for a vehicle approaching a traffic signal for
both cases of known and stochastic switching times was considered.
For the first case, the problem was formulated as an optimal
control problem and was solved analytically via PMP (Pontryagin's
Maximum Principle). Subsequently, the case of stochastic switching
time with known probability distribution was also addressed, and
the problem was cast in the format of a stochastic optimal control
problem, which was solved numerically using SDP (Stochastic
Dynamic Programming). The proposed SDP algorithm may take
several minutes to execute, which implies that the solution is not
real-time feasible and can therefore not be obtained on-board the
vehicle, but must be executed offline, at the infrastructure side,
and be communicated to approaching vehicles according to their
current state.

To substantially reduce the computation time and memory re-
quirements for the solution of the above-mentioned stochastic
GLOSA problem and enable its solution onboard the vehicle, a
Discrete Differential Dynamic Programming (DDDP) algorithm is
employed in the current work. DDDP was proposed by Heidari
(Heidari et al., 1971) for deterministic problems in the context of
water resources system optimization and has been widely used in
that domain to reduce the computational requirements compared
with the standard DP (Dynamic Programming) algorithm of Bellman



(Bellman, 2015). DDDP is an iterative algorithm, whereby each it-
eration receives a feasible (but non-optimal) solution trajectory
and transforms it to an enhanced one, to be used in the next
iteration. The procedure starts, at the firstiteration, with a feasible
starting trajectory provided by the user. Each iteration employs
the conventional DP algorithm to solve the problem within a strongly
reduced state domain (compared to the original problem’s state
domain) around the received state trajectory of the previous
iteration. The procedure stops, when, at some iteration, the received
trajectory is found to be the optimal one, hence it cannot be
further enhanced. It is also possible to reduce the discretization
intervals, while advancing with the iterations, in order to improve
the solution accuracy. The computational time required for each
iteration is far lower compared to that of the one-shot full problem
solution due to the strongly reduced space domain considered.
Thus, even though we have multiple successive iterations, the
computational time for all of them mauy still be significantly lower
than for the one-shot full problem solution.

It should be noted that, in contrast to deterministic optimal control
problems, stochastic optimal control problems do not feature a
solution trajectory, even for given initial states, due to the uncertainty
of system evolution created by the stochastic variables. However,
in the specific stochastic problem (stochastic GLOSA) considered
here, such a trajectory is indeed present in the problem solution,
and this allows for application of the DDDP algorithm despite the
stochastic nature of the problem.

The remainder of the paper is organized as follows: in Section 2,
the optimal control problems with known signal switching time
and uncertain signal switching time, as proposed by Typaldos et
al. (2020a), are briefly presented for completeness, followed by
the presentation of the DDDP algorithm. Demonstration results of
the DDDP algorithms performance and comparison with the one-
shot stochastic GLOSA results, are presented in Section 3. Finally,
Section 4 concludes this work, summarizing its contributions and
future work.

2. OPTIMAL CONTROL PROBLEMS
AND SOLUTIONS FOR GLOSA WITH
KNOWN OR UNKNOWN SIGNAL
SWITCHING TIME

This section describes briefly the GLOSA approaches for the cases
of known or unknown signal switching time, as proposed by
Typaldos et al. (2020a); followed by the description of the DDDP
approach proposed in this paper.

2.1 Known Signal Switching Time

Consider a vehicle traveling from an initial state x,=[xp,v,]", with x,
being a given initial position and v, a given initial speed of the
vehicle; with the purpose to reach a fixed final state xe=[xe, ve]T
within a free (but weighted) time horizon to, With x, and v, being
the vehicle's final position and speed, respectively. Between the
initial and final positions, there is a traffic signal, and hence the
additional restriction that the vehicle cannot pass through the

traffic signal's position x4 before the known time t;, which is the
time that the traffic light turns green from red. The implicit
assumption here is that a red light is active when the vehicle
appears on the link (at time 0), but a generalization, which includes
the case where the vehicle appears when the traffic light is green,
is given in (Typaldos et al., 2020a). The objective of the vehicle is
to appropriately adjust its acceleration (control variable), so as to
minimize fuel consumption, while satisfying the initial and final
conditions x, and x,, as well as the intermediate (traffic signal)
constraint.

The minimization problem outlined above is formulated as an opti-
mal control problem, which accounts for the vehicle kinematics via
the following state equations:
(1)
(2
where a is the vehicle acceleration which assumes the role of the
control variable. The objective criterion to be minimized reads

(3)

In addition, the green-light constraint, tg>t;, must be fulfilled,
where tg is the time at which the vehicle crosses from the signal
position x4, that is, x{tg )=x,. Note that the utilized acceleration cost
term a? in the cost criterion was demonstrated in an earlier study
to be an excellent proxy for deriving fuel-minimizing vehicle trajec-
tories (Typaldos et al., 2020b). Note also that the final time ¢, is
free, but penalized with the parameter w. For higher values of w,
the resulting t, will be lower and vice versa. This, consequently, af-
fects the acceleration cost, which, depending on higher or lower w
value, will also have increased or decreased values (for more details
see (Typaldos et al., 2020a)). If necessary, upper and lower bounds
may be applied to speed v and acceleration a.

The solution of this problem was addressed in (Typaldos et al.,
2020a) and can be obtained analytically using symbolic differen-
tiation tools. Thus, the numerical solution of the deterministic
GLOSA problem, for a specific problem instance, takes only frac-
tions of a second of computation time and can be executed in real
time on-board for each approaching vehicle.

For a given junction, the final state is the same for any initial vehi-
cle state xy and any switching time t,. Therefore, the optimal value
of criterion (3) of the deterministic GLOSA problem depends on
these variables and is denoted J%; (X, t; ) for later use.

2.2 Uncertain Signal Switching Time Problem

The traffic light switching time may be subject to short-term deci-
sions in dependence of the prevailing traffic conditions in cases of
real-time signals. In such cases, we typically have minimum and
maximum admissible switching times; hence, based on statistics
from past signal switching activity, we may derive a probability dis-
tribution of switching times within the admissible time-window of
possible signal switching times. Thus, the problem can be cast in
the format of a stochastic optimal control problem, which may be
solved numerically using SDP techniques. To this end, the analytical
solution of the deterministic GLOSA optimal control problem is used
within the stochastic approach, as will be explained in this section
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(for more details see (Typaldos et al., 2020a)).

For the SDP algorithm (Bertsekas, 1995), the discrete-time version
of the vehicle kinematics, with time step 7, is considered, as follows:

(4)
(5)

where x(Kk), v(k) correspond to the vehicle position and speed at
discrete times k= 0,1,... (where KT = t), while the control variable
a(K) reflects the acceleration that remains constant over each time
period k. The state and control variables are bounded within the
following feasible regions

(6)

(7)
With X i X0 @Nd @i, @, 0 DEING the lower and upper bounds of
the states and acceleration, respectively. The traffic light's dis-
crete switching time k; is not known, but it is assumed that a
known range Kk ,;,<k; <k, of possible switching times exists,
with k., and k., being the minimum and maximum possible

switching times.

For proper problem formulation, a virtual state x (k) is introduced,
that reflects formally the stochasticity of traffic light switching

(8)

where z(k]) is a binary stochastic variable defined as

(9)

with (8) and (9), the virtual state X(k]) is either equal to 1, if the
traffic light has not yet switched until time k-1; or equal to 0 if
switching occurred at time k or earlier. The virtual state X(k] is as-
sumed measurable, which means that the system knows at each
time KT if switching has taken place or not within the last time pe-
riod [(k-1)T, KT].

The stochastic variable z(k) is independent of its previous values
and takes values according to a time-dependent probability distri-
bution p(z|k). Based on the statistics of previous signal switching
activity, availability of an a-priori discrete probability distribution
P(K), Kmin<k1=<Kqx is assumed, for signal switching within the
time-window, where

1. Since no switching takes place for k<k -1, we have
p(0|K)=0 for k<k ;-1 (10)

For k= k ;. the probability distribution p(z|k), is obtained by use
of “crop-and-scale”, meaning that the a-priori probabilities of pre-
vious time steps, where switching did not take place, are distrib-
uted analogously to increase the probabilities of the remaining
discrete times within the time-window (Lawitzky et al., 2013). As
shown by Typaldos et al. (2020a), this update may be done by use
of the following crop-and-scale formula that applies for k,,;,, <k<
Kmayx-1 @nd for any a-priori distribution P(K)

(11)
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where the term in brackets reflects the crop-and-scale update.

The cost criterion of the stochastic problem is the same as in the
deterministic case (3). However, in the stochastic case, the exact
value of the criterion depends on the stochastic variable's realiza-
tion, and therefore we consider minimization of the expected value

(12)

where the expectation refers to the stochastic variable z(k), k=0,...,
Kmax~1. Note that, when the switching time becomes known at time
k4, while the vehicle is at state x(k,], the problem instantly be-
comes a deterministic GLOSA problem, and the corresponding op-
timal cost-to-go is J%; [x(k), k1], which will be denoted as the
"escape cost”.

To obtain a formally proper cost criterion, the stochastic variable
z(k) and the virtual variable x(k) introduced earlier are used, and,
as shown by Typaldos et al. (2020a), this yields the objective func-
tion in the required form, as follows

(13)

Equations (4)-(13) constitute an ordinary stochastic optimal con-
trol problem (Bertsekas, 1995). Denoting the corresponding opti-
mal cost-to-go function by V[x(k), X(k), k], the recursive Bellman

equation for 0<k<k -1 reads

(14)

with boundary condition

2.3 Discrete SDP Numerical Solution Algorithm

For the numerical solution of the stochastic problem, using the SDP
algorithm, the state and control variables must be discretized. As
the discretization level has a significantimpact on computational
time and memory requirements, but also on the accuracy of the
computed solution, an appropriate trade-off should be specified
between reasonable computation requirements versus achievable
solution quality.

For the discretization, the discrete time interval, Tis set equal to 1
s, which is a reasonable choice for the problem at hand. Then, a
general discretization interval A for the problem variables is as-
sumed, and the discretization interval of acceleration is set Aa=A.
From (5), the discretization interval of speed assumes the same
value (Av=Aa=A). Likewise, in view of (4), the discretization interval
for the position is

(15)

Based on these settings, it was shown in (Typaldos et al., 2020a)
that, if x(k), v(k), a(k) are discrete points, then x(k+1) and v(k+1)



resulting from (4) and (5) are also discrete points.

Itis now straightforward to apply the discrete SDP algorithm to ob-
tain an optimal closed-loop control law a(k)*=R[x(k), k], which for
any given vehicle state x(k)EXand time k, delivers the optimal ac-
celeration a(k)*. The SDP algorithmic steps are summarized below.
Note that the algorithm needs to consider only the case X(k)=1,
therefore any arguments pertaining to X(k) are suppressed for con-
venience.

The SDP algorithm is described as follows:

As mentioned, this algorithm delivers an optimal control law
a(k)*=R[x(k),k] for the full state domain X. Note that general sto-
chastic optimal control problems do not possess a solution trajec-
tory for specific initial states xj, because the state evolution is
uncertain in presence of the stochastic variables. However, in the
specific GLOSA problem addressed here, the evolution of the vehi-
cle state (4), (5) is not affected by the stochastic variable z(k),
which concerns only the signal switching time. Thus, for a given
initial state, i.e. vehicle position and speed at time 0, the optimal
control law may be used to produce an optimal vehicle trajectory
that the vehicle should pursue; until the signal switching actually
occurs, in which case the vehicle should instantly behave accord-
ing to the deterministic GLOSA solution.

2.4 Discrete Differential Dynamic Programming

The major disadvantage of the discrete (S)DP algorithm is the high
computation time required for the numerical solution of the opti-
mal control problem. To address this weakness, several modified
DP algorithms have been proposed, which lead to reduction of the
computational effort; and one of them is the DDDP algorithm, pro-
posed in (Heidari et al., 1971) for deterministic optimal control
problems. The method can nevertheless be applied here, because
an optimal vehicle trajectory may be derived for the stochastic
GLOSA problem, despite its stochastic character.

As already mentioned, DDDP is an iterative algorithm, calling for a
feasible starting state trajectory to be specified externally. Each
iteration (receives a feasible (but non-optimal) state trajectory x*"(k),
and transforms it to an enhanced one x%(k), to be used in the next
iteration. To this end, each iteration solves a discrete SDP problem
by use of the standard SDP algorithm presented above.

What changes at each iteration lis the considered state domain

whichis a
strongly reduced subdomain of the original state domain Xin (6).
In other words, the discretized SDP problem is solved in each iter-
ation (within a corridor with width around the received state
trajectory x“")(k) of the previous iteration, to produce a solution
trajectory xV(k) for use in the next iteration. The corridor width
AY , as well as the discretization intervals Aa¥, Ax", can vary in
each iteration, typically at a decreasing rate. The procedure stops
when a termination criterion is satisfied.

In the proposed GLOSA application, the starting trajectory for the
first iteration of DDDP is the optimal solution of the deterministic
GLOSA problem, assuming the “pessimistic” case where the traffic
light will switch from red to green at the latest possible time, that
is, at k1=K, S0 as to cover the whole time range and be not too
far from the stochastic optimal trajectory; see (Typaldos et al.,
2020a). The discretization intervals Aa'"’, Ax!"” for the first iteration
are also given. The intervals are reduced by half, each time there
is no solution improvement at two subsequent iterations.
The corridor width is taken as . where C=[C, C,]
are constant given values specifying the state corridor width. Thus,
the corridor's initial width is defined through the chosen values for
Cand Ad". In the following iterations, whenever the discrete inter-
val is reduced, there is an analogous reduction of the corridor
width. Consequently, we have a constant number of feasible dis-
crete points in all iterations, which facilitates the algorithm'’s fine-
tuning so as to improve its computational efficiency. Note that, (,,
and (, values may differ, as the magnitude of the two respective
state variables differs.

The admissible control region U (see (7)) is kept the same at each
iteration, although many related state transitions cannot be con-
sidered in view of the reduced state variables domain. The algo-
rithm terminates whenever there is no improvement of the
produced solution trajectory even after a reduction of the dis-
cretization intervals; or when the Aa' value becomes less than
0.125, which was found in (Typaldos et al., 2020a) to lead to suffi-
ciently accurate results.

It should be noted that there is no general guarantee that the DDDP
iterations will actually converge to the full-domain SDP solution. In
particular, if the state sub-domains considered in the itera-
tions are too small, the obtained DDDP solution may actually differ
from the SDP solution. On the other hand, if the state sub-domains
are selected large, the required number of iterations may de-
crease, but the computation time required to find the solution at
eachiteration increases accordingly. In conclusion, some fine-tun-
ing regarding the size of sub-domains is necessary to ensure con-
vergence to the SDP solution with minimum overall (all iterations)
computation time.

3. RESULTS

In this section, some results using the proposed DDDP approach
are presented. Several scenarios have been tested, with differ-
entinitial and final conditions, different switching windows and
different probability distributions. In these scenarios, different
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situations occur, such as cases where the vehicle needs to ac-
celerate or decelerate before or after crossing the traffic signal;
or cases where the vehicle is even forced to fully stop and wait
until the traffic light's switch from red to green.

One scenario will be presented here (more results and scenarios
are being considered in ongoing work) with the following initial
and final conditions: S
]

The traffic light position is x,=150 m. The states and control
bounds are set t0 [X ;s XpaxJ=[0,1501 m, [V VioyJ=10,16]
M/, [ iy Oe=[-3,31 m/s?, respectively. The time step Tis 1 s and
the switching time range for the traffic lightis [K,,;,, Kpnay 1=[10,30]
with uniform a-priori probability distribution. For the initial dis-
cretization, Aa=Av=0.5 is used, which leads to Ax=0.25 m and
the initial corridor width is set £ = [20,4], i.e. we have (,=5C,.
The choice of the initial discretization and corridor width value
will be justified later in this section.

Figures 1 and 2 display the optimal state (speed) and control
(acceleration) trajectories over each iteration of the DDDP al-
gorithm. Note that, position trajectories are not included, as the
difference of those trajectories, at each iteration, is small and

(a) Iteration 1

(c) Iteration 3

(e) Iteration 5

barely visible. Specifically, in each iteration we consider a cor-
ridor around the respective received
state trajectories, which cannot of course extend out of the full
state bounds.

In both Figures 1 and 2, the dashed blue lines represent, for
each iteration, the received trajectory, the solid orange lines
represent the optimal trajectories derived, and the red dashed
lines reflect the corresponding corridor bounds. It can be ob-
served from Figures 1-2 that, starting with the initial chosen dis-
cretization, the first DDDP iteration improves the initial
trajectory, leading to a better solution, which is optimal within
the considered sub-domain. In the second iteration, no further
improvement can be achieved, which means that, with the cur-
rent discretization values, the best achievable solution has been
reached. By reducing the discretization at the 3™ iteration, a re-
duction in the corridor width is observed, but the number of dis-
crete points remains the same. This reduction enables further
improvement of the solution, and the procedure continuous
until the termination criterion is fulfilled. Table 1 contains the
values of the objective function for each iteration of the DDDP
algorithm, assuming Aa=0.5 and €=[20,4], where the choice of
these values will be explained in the following.

(b) Iteration 2

(d) Iteration 4

(f) Iteration 6

Figure 1: Received (blue dashed line) and optimal (orange line) acceleration trajectories of DDDP algorithm in each iteration.
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In Table 2, the results of DDDP for different initial corridor C and
discretization Aa values are presented. It can be seen that, for
all presented discretization values, as the corridor's width is in-
creased, a reduction of the number of DDDP iterations is ob-

(a) Iteration 1

(c) Iteration 3

(e) Iteration 5

served. This behaviour is expected, as the bigger corridors, i.e.
bigger admissible regions, lead to potentially better solutions
at each iteration, and hence to fewer iterations to reach the
original SDP problem's

(b) Iteration 2

(d) Iteration 4

(f) Iteration 6

Figure 2: Received (blue dashed line) and optimal (orange line) speed trajectories of DDDP algorithm in each iteration. The

corridor A is marked with red dashed lines.

optimal solution. On the other hand, despite the decrease on
the number of iterations, the overall computation time is in-
creased due to the higher computation time required at each it-
eration, which in turn, is due to more feasible discrete state

points included. Moreover, for very small values of C, it is no-
ticed that DDDP could not converge to the best possible solution
when the termination criterion is fulfilled, due to the extremely
limited state space.

Table 1: Optimal Cost evolution and discretization change in
each iteration of DDDP algorithm
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Table 2: Performance of DDDP algorithm in terms of CPU-time and optimal cost for different initial values of C and Aa

Based on these observations, the selection of the values = The accuracy of the DDDP algorithm compared to the full one-
[20,4] and Aa=0.5 seems to be a reasonable choice, and this  shot SDP solution is assessed in Figure 3. In this figure, the
choice was found to lead to similar results also in several other  optimal state (speed) and control (acceleration) trajectories
scenarios, not presented here.

(a) Iteration 1 (b) Iteration 2
(c) Iteration 3 (d) Iteration 4
(e) Iteration 5 () Iteration 6

Figure 3: Optimal acceleration and speed trajectories (orange line) of three DDDP iterations, compared with corresponding
optimal trajectories of the one-shot SDP (blue dashed line).
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(orange lines), in the first, middle and last DDDP iterations are
contrasted to the corresponding optimal trajectories derived from
the full-range SDP (blue dashed lines) with a discretisation of Aa =
0.125. It can be seen that DDDP, starting in the first iteration with
the initial trajectory derived from the “pessimistic” deterministic
GLOSA problem, manages to converge at the exact same optimal
solution as the full-range SDP. The obtained optimal cost of both
approaches is 1.17517, while the computation time difference is
remarkable, as the one-shot SDP needs 613.86 s to obtain the
solution, while DDDP needs only 0.69 s. More importantly, this big
reduction in computation time enables the DDDP algorithm to be
executable in real time, even in an MPC (Model Predictive Control)
mode, on the vehicle side, similarly to the deterministic GLOSA.

4. CONCLUSIONS

The current work is an extension of a previous work (Typaldos et
al., 2020a), where a stochastic GLOSA methodology was developed,
by optimizing, using SDP techniques, the vehicle kinematic
trajectories subject to the intermediate stochastic traffic signal
switching constraint and with a fixed final state. In the present ex-
tension, a Discrete Differential Dynamic Programming (DDDP) al-
gorithm was developed, which solves the original SDP problem it-
eratively, each time considering a reduced state space. Demonstration
results demonstrate that the DDDP algorithm strongly outperforms,
by a factor of 1:1000 the full-range SDP in terms of computation
time. This enables the DDDP algorithm to be executable in real
time on-board approaching vehicles, even in a model predictive
control (MPC) mode.

Current and future work is focused on:

e Generalization of the current GLOSA problem by considering un-
certain switching times for both green and red phases.

e Solving the SDP problem with a different modified iterative DP al-
gorithm, in an attempt to further reduce the computational time.
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Ma tn ouyypadn tou mapdvtog apBpou, anovepnBnke otov Neo Epeuvntn
Jasso Espadaler Clapés to BpaBeio Néou Epeuvntrh «MatBaiog KapAadtngs katd
™ &1apkela tou 10 MeBvoug Suvedpiou yvia tnv ‘Epeuva otic Metadopég (ICTR 2021)

Lane changing and lane choice

in an urban environment.

The case of Panepistimiou avenue

Jasso Espadaler Clapis', Emmanouil Barmpounakis', Nikolas Geroliminis'

ABSTRACT

The pNEUMA dataset is the result of a unique field experiment
using a swarm of ten drones flying over the central district of
Athens, Greece. Using this newly available dataset, this paper
focuses on two directly related topics: i) lane changing and ii)
lane choice in one of the busiest arterials in the city (Panepistimiou
avenue). The main concept of this study relies on the definition of
two layers regarding how the six lanes of the arterial are actually
being used. Specifically, we argue that the lanes that are marked
on the arterial (marked layer) are influenced by the frictions
created by buses, bus stops, taxi stops, illegal on-street parking,
etc. Using a lane detection algorithm, we show that there is an
active layer which is different to the marked lanes on the road af-
fecting capacity in the macroscopic level and driving behavior in
the microscopic.

Keywords: unmanned aerial systems, swarm of drones, traffic
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monitoring, traffic flow modeling, multimodal systems, lane
changing, lane choice.

NMEPIAHYH

H Bdon dedopéviv pNEUMA eival to anotéieopa evds povadikou
neipduatos 6nou xpnaigonolnBnke éva ounvos 6éka drones ndvw
and v kevipikh nepioxn twv ABnvav. Xpnaiponoicvias autd ta
npoopdtws 61a8éaipa Hedopéva, auth n epyacia enikevipwvetal oe
600 dpeaa oxeuldpeva Béparta: i) aAdayn Awpibas Kal i) emAoyn
Awpidas o pia ané us nio noAugUxvaaotes aptnpies tns néans (Ae-
w@dpos Maveniatnpiou). H Baoikn 166a auths tns epyaaias Baailetal
otov opiopd HUo eninédwv ae oxéan e Tov IPANO pE ToV 0Mnoio xpn-
aidonolouvtal ol €€l Awpides tns aptnpias. Zuykekpipéva, unootnpifoupe
6u o1 Awpibes nou enionpaivovtal ato 0660Tpwpa («papkapiopévo
eninedo») ennpedfovial and us aAAnAemdpdacis nou Snpioupyouvial
and kivhoels Aew@opeiwyv, otdoels Aewgopeiwv, otdoels tagi,
napdvopn otdBueuon K.An. Xpnoiyonoiwvias évav afy6piBuo avi-



xveuons Awpibwv, beixvoupe 6t undpxel éva dAdo eninedo («evepyod
eninedo») nou Slagépel and us enionpacuéves Awpides ato pdpo
nou ennpeddouv tnv KUKAOQOPIOKN 1KAVOTNTA OE PAKPOOKOMIKG
eninedo kai tnv odnyIkn cupnePIPopd oe PIKPOOKOMIKOD.

Né€ets - kedud: un enavbpwyéva evaépla ouotriuata, ourivos drone, na-
pakofouBnaon Kukiogopias, npotunonoinan kukAogoplakis pors, no-
Autponusd petagpopusd ouatriuata, addayn Awpibas, endoyn Awpidas.

1. INTRODUCTION

Understanding how vehicles drive in an urban congested environment
has drawn the attention of the transportation research community
which has been craving for high-quality datasets for years. Yet, the
lack of reliable data has prevented researchers from properly studying
traffic phenomenain such a context. Recent progress in data collection
techniques using unmanned aerial systems (UAS or commonly known
as UAVs or drones) has allowed the development massive datasets to
study congestion and traffic phenomenain cities.

The pNEUMA dataset (https://open-traffic.epfl.ch) is precisely the
result of a unique field experiment using a swarm of ten drones
flying over the central district of Athens, Greece and offers a unique
opportunity to study traffic-related phenomena in a multimodal,
congested and urban environment (E. Barmpounakis & Geroliminis,
2020). The authors demonstrated the convenience of drones for
the collection of massive datasets with the realization of a unique
experiment with ten drones in Athens, Greece. The result of this
field experiment was a dataset with over 0.5 million detailed
trajectories ready for use to the entire scientific community.

In order to better utilize the pNEUMA dataset, (E. Barmpounakis et
al., 2020) described a methodology to extract traffic information
atthe lane level. The authors presented an algorithm based on the
Jenks natural breaks classification method that allows to cluster
the trajectories and identify the lanes from the data. Additionally,
they provided another algorithm for lane-changing maneuver de-
tection based on the concept of azimuth with both algorithms
having a high accuracy over 95%. Using this newly available dataset,
the current work focuses on two understudied and directly related
topics: i) lane changing and ii) lane choice in urban environments.

With regards to lane changing studies, there has been an extensive
research especially on the modeling in freeways. A well-known ex-
ample is the MOBIL model (minimizing overall braking induced by
lane changes) introduced in (Kesting et al., 2007) and applied to
traffic simulation data. It is built on an acceleration function that
considers the speed of the vehicle, the distance to the front vehicle
and their relative speed. Additionally, itincludes a politeness factor
to account for driver aggressiveness. In (Toledo et al., 2003) the
authors introduced an integrated lane-changing model that allows
drivers to consider mandatory and discretionary lane changes at
the same time with a utility function. The modeling is based on
target lane choice and gap acceptance models and was validated
with freeway trajectory data in the US. The study of (Toledo et al.,
2005) explored the relation of lane changing models to lane choice
in highways, by presenting a generalized lane-changing model in
which drivers choose their lane based on a variety of reasons.

Yet, there have been some attempts to investigate how vehicles
drive in an urban environment. (Gipps, 1986) proposed a first
framework to understand the lane-changing decisions made by
drivers in an urban driving situation. The emphasis was put in the
hierarchy of decisions to produce logical and realistic traffic simu-
lations. Another example to understand vehicle trajectory in urban
arterials was given by (Wei et al., 2000). The authors proposed a
lane-assignment model to describe the trajectory of a vehicle in
an urban context. The model is the result of empirical observations
of the lane choice from videos in eight streets in Kansas City, US.
On top of the mandatory and discretionary lane changes the
authors introduced the concept of preemptive lane changes, rep-
resenting the lane changes towards the turning lane at a downstream
intersection. On the other hand, (Choudhury & Ben-Akiva, 2008)
presented a novel choice model for urban arterial intersections
based on the concept of target lane, which is the lane that is
better perceived to drive on. The lane selection model is shaped as
a two-level decision: choice of the target lane and choice of
immediate lane. The parameters were estimated with vehicle tra-
jectories in an important intersection in Lankershim Boulevard in
Los Angeles, California. Furthermore, (Sun & Elefteriadou, 2012)
focused on the drivers to understand their behavior when performing
alane change in an urban context. For that purpose, they used an
instrumented vehicle to observe the driver's actions, the background
of the driver and the trajectory. The results allowed to classify the
40 drivers of the experiment into four big groups according to
their lane-changing maneuvers. Finally, understanding lane choice
and the way vehicles drive in an urban arterial is vital for future re-
search on autonomous vehicles. An example of recent research on
the matteris (Lu et al., 2020). The authors predict lane-level short-
term traffic speed using a new mixed deep learning model. Speed
is assumed to have a key role on lane choice -and thus lane chang-
ing-: being able to evaluate speed in the short term allows to make
better decisions on the lane to drive on.

Lane-changing activity is also supposed to play a role in the
capacity of a network. One of the first attempts to model lane-
changing behaviors and their effects was (Laval & Daganzo, 2006).
The publication is based on the idea that a vehicle changing the
lane acts as moving bottleneck on the new lane. The authors used
theoretical experiments to validate the model and lacks an empirical
validation. The model recognized the harsh acceleration of lane
changes and helps to explain the reduction of flow. More recently,
the authors in (Sala & Soriguera, 2018) provided some empirical
findings on freeway lane-changing (B23 access freeway in
Barcelona). They confirmed the relation between reduced flow
and lane changes: lane changes peaked in congestion periods,
and more precisely, downstream of a bottleneck when free flow
conditions were recovered. In (Sala & Soriguera, 2020) the authors
used the same dataset to quantify the capacity reduction due to
the lane-changing activity. However, they did not find empirical
evidence that lane changes triggered congestion episodes.

Additionally, in some cities Powered-Two Wheelers (PTWs) have
become a popular mean of transport for everyday commuting (E.
N. Barmpounakis et al., 2016). However, quantifying their effect
on traffic and modeling their driving behavior are complex tasks
given their particular characteristics like the unconventional lane-
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changing maneuvers or the filtering phenomenon. (Vlahogianni,
2014) studied the kinematic characteristics of PTWs in an urban
arterial and their interactions with the other vehicles. Using video
recordings, the author also analyzed the factors triggering the
filtering phenomenon and the overtakes. In the same direction,
(E. N. Barmpounakis et al., 2018) attempted to model the uncon-
ventional overtaking patterns of PTWs drivers using meta-optimized
decision trees. However, their effect on traffic conditions and how
they interact with the rest of vehicle needs to be studied in more
detail with the new data that are becoming available to better un-
derstand their unique characteristics.

Itis seenthat studying lane choice and lane changing in urban envi-
ronments cannot be conducted using the same concepts that are
used in motorways. The perturbations in traffic caused by the
different modes combined with the drivers' tendency to compete
more intensively for the same limited space in order to move faster
creates the need for different approaches. While lane changes have
been extensively studied for freeways, their relation with stop-and-
go effects in congested arterials is unexplored, especially when
complex multimodal interactions with heterogeneous drivers are
considered. Service-related stops of all relevant modes (taxis, buses,
delivery vehicles) create static and moving bottlenecks of different
magnitude that are associated with long lane-changing phenomena.
With respect to lane choice, empirical evidence is limited as the
physical mechanism of the problem requires data that are spatially
far and difficult to obtain. Thus, the study of such phenomena using
this detailed dataset can allow researchers to better understand
the underlying mechanisms of urban congestion propagation and
to better model complex phenomena of urban traffic flow.

The current study is conducted in Panepistimiou avenue, a 6-lane
arterial which makes it one of the busiest central arterials of
Athens. In this paper, we argue that the lanes that are marked on
the arterial (marked layer) are influenced by the interactions and
frictions created by buses, bus stops, taxi stops, illegal on-street
parking, etc. and we show that there is an active layer, which is
different to the marked lanes on the road affecting capacity in
the macroscopic level and driving behavior in the microscopic.
Therefore, two layers are defined regarding how the six lanes of
the avenue are actually being used.

2. MAIN TEXT

2.1 Data processing

2.1.1 Description 0f The pNEUMA Dataset
The pNEUMA dataset (E. Barmpounakis & Geroliminis, 2020]) is the
result of a one-of-a-kind field experiment that took place in Athens,

Greece in October 2018. A swarm of ten drones flew over the
central district of the city recording a massive number of trajectories.
The goal of the experiment was to record traffic streams using
drones in order to study traffic phenomena in an urban, congested,
multimodal and busy environment. Drones provide an excellent
point of view from above that allowed to neatly capture all the tra-
jectories. This is, to the authors knowledge, the most exhaustive
dataset in such an environment.

Particularly, the swarm of drones covered the central parts of
Athens during the morning peak (8:00am-10:30am) each working
day of the week. However, the recording process was split into 30-
minute sessions due to the limited drone autonomy. Each session
included take-off, routing, landing and 15 to 20 minutes of
continuous recording. More specifically, there were two take-
off/landing locations from where the ten drones would fly to their
particular hovering points. Once all the drones would be located in
their hovering points, continuous recording of the traffic streams
would start.

The result of this experiment is the numerous trajectories that are
described with their coordinates in the World Geodetic System
(WGS 84) at very high frequency (25 datapoints per second or a
datapoint every 0.04 seconds). Features available include position
information like speed, acceleration or distance traveled but also
vehicle type (car, taxi, PTW, bus, heavy vehicle, and medium
vehicle). For more details on the experiment refer to (E. Barmpounakis
& Geroliminis, 2020). The data is part of an Open Science initiative
and can be downloaded from https://open-traffic.epfl.ch.

2.1.2 Area 0f Study

Given the fact that the aim of this paper is to study lane changing
and lane choice in an urban environment, the area of study should
be an arterial with a variety of origin-destination pairs for an
adequate sample size. The area chosen is the Panepistimiou
avenue, a 6-lane arterial with multiple streets converging and di-
verging from it. Figure 1 shows the area of study with the traffic
streams concerned on top of it (from right to left). The area starts
after the turn coming from the most central square of Athens
(Syntagma Square) and ends 725m downstream. The street begins
as a 6-lane arterial with its leftmost lane as a bus lane in the
opposite direction (from x=0m to x=250m). On the other side of
the street, the rightmost lane contains several bus stops and
unofficial taxi stops. Approximately at x=500m, the rightmost lane
ends, and the street becomes a 5-lane arterial. One of the particu-
larities about the avenue is illegal on-street parking in both sides
of the road. All these elements create frictions with the traffic
streams and will be further analyzed.

Figure 1: Area of study: Panepistimiou avenue, Athens, Greece
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The traffic in the street is composed of vehicles coming from
upstream as well as vehicles joining from neighboring streets. The
vehicles can either continue downstream towards Omonoia Square
orturn at one of the multiple streets that stem from Panepistimou
avenue. This paper focuses exclusively on the vehicles that join
the street at the upstream inlet (x=0m) and continue downstream
towards Omonoia Square or turn at one of the three turns in the
second half of the area represented in Figure 1: two on the right
(x=400m and x=610m) and one on the left (x=530m). Vehicles
joining from other intersections are not considered. All these
options have been represented with virtual loop detectors that
act as virtual checkpoints and allow to classify the vehicles
according to their destination. Table 1 summarizes the virtual
loops installed in the street to control the destination of each
vehicle in the area of study.

The data analyzed spans over 4 different days of the experiment.
Specifically, 24/10/2018, 19/10/2018, 30/10/2018, 01/11/2018
and focuses on the last flight session of each day (10:00-10:30 or

10:30-11:00). In total, 1769 vehicles are studied during the four
days mentioned above. 0f those, the grand majority of the vehicles
analyzed (1645) are either cars, taxis, or PTWs; over 90% in all days.
More specifically cars and taxis represent more than half of the
vehicles (675 cars and 384 taxis) and 586 PTWs add to almost a
third. Buses and medium and heavy vehicles are a clear minority in
the sample and are therefore removed from the analysis which will
then focus on cars, taxis, and PTWs.

With respect to the destination of vehicles the introduction of
virtual loops allows to easily keep track of such information. The
area is of special interest given that approximately a third of the
vehicles turn instead of driving straight towards Omonoia square.
Exits R1 and L1 gather over 10% of the vehicles analyzed each. On
the other hand, exit R2 has the smallest sample as only 7.52% of
the vehicles analyzed turn at the second right turn. 0f the 1645
vehicles analyzed, 252 turn at exit R1, 128 turn at exit R2, 168
turn atexit L1, and 1097 continue straight on towards exit S.

Table 1: Virtual loops to classify vehicles according to their destination

2.2 Defining The Active Layer

One of the main objectives of this paper is to explore vehicle lane
choice to better understand how vehicles drive in the urban envi-
ronment according to their destination. Information at the lane
level is therefore essential to conduct such a study. For that
purpose, two methodologies were examined regarding how the six
lanes were actually being used. On the one hand, the marked
layer corresponds to the lanes marked on the road, and their coor-
dinates can be carefully extracted from georeferenced videos. On
the other hand, when we apply the lane detection algorithm from
(E. Barmpounakis et al., 2020) for an extended arterial an active
layer is unveiled, which is different to the marked lanes on the

road and affects capacity in the macroscopic level and driving be-
havior in the microscopic. The main advantage of the active layer
is that it shows the real use of the lanes made by drivers. For
instance, if a lane is blocked by parked vehicles and vehicles
cannot drive on it, this lane is included in the marked layer but
since it cannot accommodate any flows it is not included in the
active layer. This is illustrated in Figure 2 where an example of
blocked lanes is shown; the leftmost lane of the street due to
parked vehicles and the rightmost lane due to taxi stops. The
active layer therefore provides significant information on the real
usage of the available space for drivers that cannot be obtained
with the marked lanes on the road.

Figure 2: Example of blocked lanes

Since the active layer s the result of running the algorithm along
the arterial for every 2 or 5 meters, the lane detection algorithm
computes the histogram of vehicles' distances to the edge of

the avenue at a specific point and then clusters the histogram
with the Jenks natural breaks method. By connecting the breaks
-the borders of the lanes- the active lanes are obtained.
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The choice of the distance between the clustering points is im-
portant because of the different issues that might appear due
to the peculiarities of urban traffic. When more conflicts appear
in the area, the more in detail must it be analyzed to properly
understand and represent the real traffic flows. That is why
the use of 2 or 5 meters, depending on the conflict potential, is
an adequate choice to guarantee that the active lanes are gen-
erally smooth and account for the traffic reality. Additionally,
the detection algorithm presents some other parameters to
tune, mainly the maximum lane width and the acceptable
azimuth difference (direction of movement compared to the
north), which are mutually reliant. These ensure that the result
provided by the algorithm is realistic. After a trial-and-error
process, the parameters chosen to run the detection algorithm
were 10 degrees as the maximum acceptable azimuth difference
and 4m as the maximum lane width.

In order to build the active layer several possibilities were con-
sidered: clustering the trajectories of one of the days available
in the dataset or using all the data combined. All the possibilities
were then tested, and it was decided that only the trajectories
of Thursday 1/11/18 would be considered to build the active
lanes. It should be noted that PTWs were excluded in all cases
as they would act as noisy data to the calculation of the active
layer. Although the data from the other days provided similar
outputs and indicated very similar frictions, the trajectories of
Thursday 1/11/18 provided the highest recognized area as well
as the smoothest lane borders. Furthermore, there were no el-
ements on that specific day to twist the traffic information.

2.2.1 Marked vs. Active Layer Analysis

Figure 3 shows the differences between both layers. The crosses
indicate those parts of the marked lanes that have not been in-
cluded in the active layer. Of the six lanes of the avenue, only
lanes 2, 3 and 4 are continuous. On the left side of the street,
lane 1 is detected only in the final part of the arterial. As
previously mentioned, lane 1 is actually a bus lane in the
opposite direction in the beginning of the street and then
becomes blocked due to illegal on-street parking. The lane is
only first recognized before the left turn (Exit L1) due to the
traffic stream coming from lane 2 to turn left. After the left
turn vehicles recover progressively the lane and it is again de-
tected. In the right part of the street there are more elements
that can create frictions: high presence of buses, bus stops,
unofficial taxi stops, parked vehicles, etc. These elements are
the main reason why the rightmost lane is partially blocked. At
the beginning of the avenue, lane 6 is blocked due to parked
vehicles and a taxi stop just upstream. Buses drive mainly on
lane 5 and recover lane 6 when they approach the Akademia
bus stop, which is one of the most important transportation
hubs in the avenue. After the Akademia bus stop, unofficial taxi
stops occupy lane 6 preventing other vehicles from using it.
Regarding lane 5, it starts as a continuous lane but becomes
blocked when lane 6 ends. Then, it becomes the rightmost lane
and suffers from the same issues: bus stops and parked vehicles.
That is why after a certain point lane 5 becomes blocked and
vehicles merge into lane 4. Consequently, the street becomes
a 3-lane arterial in reality (only lanes 2, 3 and 4 are available).
This situation lasts until lane 1 is recovered shortly after the
left turn. With regards to the right turns, there are no separated
turning lanes detected as opposed to the left turnin exit L1.

Figure 3: Outline of the active layer

2.2.2 Lane assignment

The study of traffic at the lane level requires to assign a lane to
each vehicle along its trajectory. Each datapoint was therefore
assigned to a lane so that we could keep track of the lane
changes and the lane choice of vehicles. For that purpose, by
the results of the lane detection points every 2 or 5 meters,
the associated clustering points were connected and converted
into polygons that formed the lanes. This resulted in an easy
lane assignment process: it sufficed to check which polygon
contained each datapoint for each vehicle. It should be noted
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that for the characteristic points at the edges of the active
layer, all points of the road between them and the edges of the
marked layer were assigned to the nearest detected lane to
the border.

Once all the points of the trajectories were allocated to a lane,
a smoothing process of the lane assigned was performed to
guarantee the veracity and continuity of the lane assigned.
Indeed, not applying any kind of smoothing would have resulted
in an unrealistic number of lane changes caused by the high



frequency of the data and the irregularity of lane borders. After
a sensitivity analysis, it was concluded that a rolling average
with a 5-observation moving window was adequate to provide
the most accurate results.

2.3. Lane Changing
In this section, the data at the lane level was utilized to study

lane changing. The identification of lane changes consists in
checking the points where the trajectory changes the lane that
has been assigned. Compared to the methodology described in
(E. Barmpounakis et al., 2020) , this method can provide more
accurate results, mostly because it is less sensitive to maneuvers
that did not result in an actual lane change.

Figure 4: Histogram of lane changes locations

Figure 4 shows a histogram of the locations where lane changes
take place. The data shows that there is a more or less constant
lane-changing rate and some very well-defined peaks. The
activity decreases in the last 100 meters of the street as an
important proportion of vehicles have left the street. The fact
that the active layer represents the real use of the street allows
to easily spot those areas in the street that are susceptible to
high lane-changing activity. These areas coincide with the
points where lanes are firstly recognized or blocked: the peak
atx=340m corresponds to the block of lane 6 in the right part
of the street and the peak at x = 500m represents the block of
lane 5. The peaks atx=500m,x=510m and x=530m coincide
with the detection of lane 1. It is seen that those peaks represent
the potential merging points and thus the methodology can

identify points of the network where capacity of an arterial is
reduced/increased, even for a short length.

The trajectories analyzed not only allow to study the parts of
the street where lane changes are more frequent but also the
relation between lane changes and other variables, i.e., the
vehicle type or the destination. This is precisely the information
provided by the boxplots in

Figure 5. The boxplots shown in this section are composed of
the interquartile range (main blue box), the median (black
line), the mean (green triangle), the 1% and 99% whiskers and
the outliers.

Figure 5: Distributions of the number of lane changes performed per a) type of vehicle and b) destination
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Figure 5a shows the lane-changing distribution for each type
of vehicle. The majority of cars and taxis, at least 75%, performed
less than 5 lane changes. However, there is a tendency for cars
to perform less lane changes: the mean for cars is 2.08 whereas
taxis performed 3.20 changes on average. The taxi distribution
has also a higher standard deviation, meaning that there is
more diversity in the taxi behavior. The fact that taxis drive on
the right part of the street, where friction elements prevent
from having continuous lanes, as well as occasional stops might
be responsible for such results. Welch t-tests (t-test assuming
different variances and sample size) confirm that there are
significant differences among the distributions: p-value tends
to zeroin all cases.

Figure 5a also allows to confirm that PTWs have a completely
different behavior. Indeed, the number of lane changes is much
higher than for the other types of vehicles; average of 8.44
lane changes. Half of the PTWs analyzed did a maximum of 7
lane changes and only 25% performed 4 or less changes. This
heavily contrasts with the car and taxi distributions. Additionally,
there are 25% of the sample observations that performed more
than 12 changes. This behavior is a clear hint of the PTWs'
filtering phenomenon; overtake other larger vehicles by driving
on the edge of the lanes creating a faster stream between
them. More specifically, a big proportion of the lane changes
detected are a consequence of small lateral movements in the
edges of the lanes. A more detailed description of this traffic
phenomenon follows in the next subsection.

With regards to the lane changes per destination,

Figure 5b presents the boxplots for all types of vehicles in each
destination. Intuitively, the vehicles driving towards exit S per-
formed more lane changes as their trajectories are longer; they
performed 5.11 changes on average, which corresponds to the
highest average value. Moreover, there are 25% of the observations
in the exit S distribution that performed 8 or more lane changes.
These observations are in their majority classified as PTWs. On
the other hand, turning vehicles performed less lane changes
since their trajectories are shorter. Vehicles turning right have
a very similar distribution and vehicles turning left have the
lowest distribution in terms of changes. The Welch t-test confirms
that the average number of lane changes of right-turning
vehicles (3.71 for exit R1 and 3.84 for exit R2) cannot be con-
sidered statistically different. Left-turning vehicles performed
less changes (3.23 on average) and have the smallest standard
deviation. This is the consequence of similar trajectories due to
the absence of frictions on the left part of the street and will be
further analyzed in the lane choice section.

2.3.1 PTW Filtering

As discussed before, the lane-changing distribution for PTWs
gave a hint of a completely different behavior. In this section,
additional evidence of such behavior is provided. In order to
have more meaningful results, only vehicles going straight will
be analyzed since they represent the largest sample and
perform more lane changes.

Figure 6: Lane changes and lateral distance distributions for each type of vehicle

The lane assignment process described in the methodology in-
cludes a smoothing of the lane allocated. This is done to avoid
non-realistic lane changes caused by the high frequency of
the data and the noisy edges of the active lanes. Yet,

Figure 6a presents the lane changes for straight vehicles when
the lane assigned has been smoothed and when it has not. The
orange boxplots (no smoothing) show a novel visualization of
the filtering phenomenon. When the lane assignment is not
smoothed the differences between the types of vehicles are
accentuated. On average, PTWs perform 18.34 changes whereas
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cars and taxis perform 4.13 and 6.74, respectively. Furthermore,
the PTWs' distribution is clearly above the cars' and taxis'. The
lane assignment, thus, captures the relative position of PTWs
inside the lanes. They do not drive in the middle of the lanes
like cars and taxis. Instead, the drive between the vehicles in
the edges of the lanes. Since these edges are noisy from the
detection algorithm, more lane changes are detected in this
area providing evidence of the filtering phenomenon.

Another relevant aspect to the filtering phenomenon is the
lateral distance traveled along the street. The lateral distance



is a consequence of the lane changes and small deviations
inside the lane. Intuitively, every time a vehicle performs a
lane change its lateral distance traveled should increase by
approximately the width of the lanes. However, this is not
always the case since vehicles perform different types of lane
changes and do not always drive on the center of the lane.

Figure 6b shows the lateral distance traveled distribution for
cars, taxis, and PTWs. PTWs drive more lateral distance than
taxis and cars, and taxis drive more lateral distance than cars.
Moreover, a Welch t-test shows that all the distributions are
statistically different. The results are very relevant and interesting
due to the difference in the nature of the lane changes performed
by PTWs and the other vehicles. PTWs tend to perform a lot of
small narrow lane changes in the edges of lanes while cars and
taxis perform wide lane changes to move towards another lane.
In a typical car change, the lateral distance traveled is approx-
imately the width of the lanes and is much higher than in a
typical PTW narrow change. This provides more evidence on
the filtering phenomenon; while cars and taxis perform wider
and less lane changes, PTWs perform narrower and more lane
changes that result in a higher lateral distance traveled.

2.4 Lane choice

As it was discussed in the literature review section, drivers
choose the lane they drive on considering their destination,
traffic conditions, surrounding vehicles and many other factors.
In this context, vehicles perform different types of lane changes:
discretionary changes to overtake slower or bigger vehicles,
preemptive changes to anticipate a turn downstream and move
towards the turning lane and mandatory changes if needed.

In this section special interest is given to turning vehicles.
Thus, the analysis of the lane choice below is done according
to their destination. The first analysis concerns the way turning
vehicles approach the target -or turning- lane, meaning the
lane used just before they turn.

The target lane for vehicles turning at the first right turn (exit
R1) is lane 5, as lane 6 is occupied due to the Akademia bus
stop and an unofficial taxi stop. In the case of the second right
turn (exit R2) the target lane is lane 4, being lane 5 blocked by
illegal on-street parking. Finally, the target lane for vehicles
turning leftin exit L1 is lane 2, as lane 1 is also blocked due to
illegal on-street parking.

Figure 7: Initial lane choice

Figure 7 presents a first representation of the choice made by
turning vehicles. Vehicles were split into i) those that always
drive on the target lane, ii) those that start on the target lane
but eventually perform at least one lane change and return to
the target lane, and iii) those who do not start driving on the
target lane and are therefore forced to change the lane. Only a
small percentage of the right-turning vehicles drove always on
the target lane (4.37% and 14.84% for exits R1 and R2, respec-
tively). On the other hand, over 36% of the left-turning vehicles
stayed always on the target lane. This difference is a consequence
of the stability of the left part of the street: there are no inter-

actions with buses and taxis and there are less frictions. In ad-
dition, lane 1 was always blocked meaning that left-turning ve-
hicles had a clear target lane (lane 2). The second group of
vehicles refers to those that performed at least one discretionary
change -they started driving on the correct lane but eventually
changed it. This characteristic is especially noted for vehicles
turning at exit R2. A possible explanation concerns the perception
of lane 4 as a central lane at the beginning of the street and
the fact that the turn is located much downstream. Contrary,
the majority of vehicles turning left that started on the target
lane continued until the turn and a small percentage did
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eventually perform a discretionary change. However, the most
important group for the three turning exits comprises the
vehicles that did not start driving on the target lane. These
vehicles performed both discretionary and preemptive lane
changes. Regarding the first right turn, even if it is the closest
turn to the beginning of the street, most of the vehicles did not
start on lane 5. Instead, most chose lanes 4 and 3. This is due
to the high presence of buses on lane 5, being lane 6 blocked
at the beginning of the avenue. Finally, straight vehicles need
another type of analysis: they perform only discretionary and

mandatory changes. 86% of the straight vehicles performed at
least 1 change and only 14% never changed the lane.

Another powerful and visual way to illustrate the choice of lane
consists in building successive histograms along the avenue
for each destination. For that reason, the avenue was split into
5-meter segments, and for each particular segment the lane
eachvehicle was most of the time was checked. The successive
histograms are represented with heatmaps in Figure 8.The
crosses indicate those parts of the lanes blocked.

Figure 8: Histograms of the lane chosen every 5 meters

The first heatmap referring to exit R1 shows that although
vehicles mainly started in lanes 3 and 4, they congregated in
lanes 4 and 5. Indeed, vehicles tent to abandon lane number 3
tojoinlane 4. Lanes 4 and 5, thus, gathered most of the traffic
until the last 125 meters before the turn. It was then that the
majority of vehicles coming from lane 6 on the right and lane 4
on the left moved towards the turning lane. Therefore, there
was a big proportion of the vehicles that waited until the last
100 meters approximately to move towards the target lane.
This choice is logical from the perspective of the frictions in the
right part of the street, and more especially by the presence of
buses on lane 5 and the bus stop Akademia just before, as it
was also seen in Figure 4. In the case of vehicles turning right
at exit R2, they suffered from similar frictions as the ones
turning right before. Yet, since the turnis located further down-
stream the first 300 meters do not show any evolution. Here,
the choice was heavily influenced by the bottleneck caused by
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the block of lane 5. Some vehicles chose lane 5 after vehicles
turning at exit R1 left the avenue but were eventually forced to
merge into lane 4. From the left side, vehicles stayed on lane 3
much longer but joined progressively the target lane. The
heatmap clearly shows that in the last 100 meters vehicles
used exclusively lane 4. With regards to the left turn, a completely
different choice model can be identified. Even if over 50% of
the vehicles did not choose the target lane at the beginning of
the avenue (Figure 7), they concentrated in lanes 2 and 3
rapidly. Additionally, vehicles left lane 3 progressively to join
the target lane, but most of them anticipated the change very
early unlike the right-turning vehicles analyzed. The absence
of frictions in the left part of the road provides a stability that
translates into a smooth transition towards the target lane.
Moreover, the very last part of the turning trajectories shows
how all the vehicles took the recognized segment of lane 1.
After using lane 1 vehicles left the avenue and did not use lane



2 as suggested in Figure 8, which stems only from the construction
of the active layer. Finally, the choice of straight vehicles
reflects that vehicles preferred to use lanes 2, 3, and 4 for they
were the only continuous lanes along the avenue. Lane 5 was
quickly abandoned as it was mainly used for buses and turning
vehicles and is close to the friction elements in the right border.
Lane 3 was the most popular lane at the beginning of the street
as it avoided both left- and right-turning vehicles. However,
after the left turn (exit L1), lane 1 was open to the traffic and
the available part of the street was shifted to the left. Lane 2
became the most popular lane as it was emptied from the
turning vehicles.

2.4.1 Last Lane Change To Join The Target Lane
Anotherinteresting aspect about lane choice concerning turning
vehicles is the last lane change made to join the target lane
before the turn. Figure 9 presents a series of metrics regarding
that particular last lane change. An important concept here is
the distance to turn, meaning the distance between the last
lane change and the turning point (point where the lane as-
signment is no longer viable). Metrics include the distribution
of the distance to turn, distribution of speed and the relations
of the distance to turn with lateral acceleration and speed.

Figure 9: Metrics of the last lane change to join the target lane

The distributions of the distance to turn in Figure 9 again show
that a majority of right-turning vehicles joined the target lane
in the last 100 meters. More in detail, the case of exit R2 shows
a well-defined peak around 100m corresponding to the block
of lane 5 where vehicles were forced to merge into lane 4. Re-
garding left-turning vehicles, the histogram shows that there
was no specific location in which the majority of the vehicles
joined the turning lane. Instead, there was a smooth transition
towards the turning lane and vehicles gradually joined the
turning lane at their convenience.

This gradual process results in a speed distribution shifted to
the right -faster- compared to the right turns. The histograms
resemble approximately normal distributions centered around
30 km/h and 40km/h for right- and left-turning vehicles, re-
spectively. There is thus, a difference in behavior: right-turning
vehicles waited until the last 100 meters approximately to join
the turning lane avoiding the interactions with buses and other

frictions and left-turning vehicles could anticipate the turn by
moving towards the target lane at their convenience.

Additional evidence of such difference in behavior is given by
the relations between the distance to turn and the lateral ac-
celeration and speed. The scatter plots for right-turning vehicles
show that vehicles that waited until the last moment to turn
have a higher lateral acceleration in absolute value. This can
be interpreted as a sign of driver aggressiveness as drivers
were forced to quickly join the turning lane before it was too
late. Nonetheless, the relation in the case of exit R2 is not as
evident due to smaller sample size and the fact that there is a
point that concentrated the majority of the observations. As
for left-turning vehicles, the trend is non-existent because
most of the drivers anticipated the turn and were not forced to
perform a sudden move to turn. Additionally, by comparing the
distance to turn and the speed in the last lane change we
discover that those vehicles performing the last change with a
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lot of anticipation could afford to drive faster. On the contrary,
drivers that waited until the last moment had to be forced to
reduce their speed: the scatter plots shows that low speeds
are related to small distances to turn.

2.4.2 Lane Speed

An interesting aspect about lane choice is the role of speed. It
is believed to play a key role on discretionary lane changes
since they are associated with vehicles willing to overtake to
improve their traffic conditions. However, speed is highly cor-
related with the particular context of each part of the street.
Figure 10 shows the average speed of cars and taxis -PTWs not
included- driving in each lane for segments of 10 meters along
the street. Only observations with speed higher than 15km/h
were considered to avoid stopped vehicles due to traffic lights
or service-related stops.

The speed profiles of Figure 10 suggest that there are important
differences between lanes on the left and lanes on the right
part of the road. Indeed, vehicles driving on the left lanes have
a higher speed than those driving on the rightmost lanes. This
difference in speed is influenced by the friction elements
already mentioned in the right border of the street. The presence
of the buses driving on themis a key factor. Even if the number
of buses on the dataset is small compared to cars and taxis,
their sole presence on the street implies a speed reduction in

the rightmost lanes where buses tend to drive on. Another
general remark is that the speed of a lane used by turning
vehicles is rapidly recovered right after they leave the street.

While the general trend described above is valid for the whole
length of the street, the speed profiles in each lane evolve as a
function of the context. Before exit L1, lane 1 acts as a small
turning lane and vehicles are forced to reduce the speed in
order to turn. Once the lane is recovered after the turn, the
speed becomes very high since few vehicles use it. On the
other hand, lanes 2 and 3 have a similar behavior. Like all the
lanes their speed starts in a short plateau and rises to more
than 40 km/h. Compared to the other lanes, they do not suffer
a speed drop around x=180m. Still, their speed is gradually
reduced until the street becomes a 3-lane arterial when the ve-
hicles drive at their lowest speed. Once the street becomes a
4-lane arterial again the speed is recovered and lane 2 becomes
even faster than lane 3. Finally, lanes 4 and 5 also have a close
behavior. Vehicles increase their speed until x=180m more or
less and after this point their speed starts to drop. This speed
reduction is probably due to the short interaction of vehicles
with lane 6 and the approaching bus stop at x=300m. After the
bust stop, lane 5 ends at x=500m due to illegal on-street
parking and vehicles are forced to join lane 4. This results in a
speed reduction that affects all the lanes since the street
becomes a 3-lane arterial for a short length.

Figure 10: Average speed profile per lane
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3. CONCLUSIONS

The pNEUMA dataset offers a unique opportunity to study traffic
phenomena in a multimodal and urban environment. This
research shows the potential of how detailed datasets together
with powerful analysis tools can be useful to model how vehicles
drive in cities and help us to better understand possible causes
of congestion's formation and propagation. Firstly, the use of
alane detection algorithm allows to extract the traffic information
at the lane level and to recognize the active usage of the
available space to traffic made by drivers. We show that the
existence of an active layer unveils that illegal on-street parking
as well as frictions in the right part of the street like buses, bus
stops, or unofficial taxi stops reduce the capacity of the avenue.
It was seen that in some areas of the 6-lane avenue, the lanes
that can actually accommodate traffic are reduced to only 3.

The analysis conducted in lane-changing activity shows a
constant lane-changing rate. Using this methodology, when a
sudden high level of lane changes is detected, it implies
conflicting areas like lane blocks. Additionally, the analysis of
lane changes with regards to the types of vehicles shows the
different way vehicles are conducting lane changing maneuvers.
PTWs perform more lane changes than taxis, which then perform
more changes than cars. In the case of taxis, as they perform
occasional stops and drive mainly on the right part of the street
due to their service-related stops or when looking for passengers,

interactions with buses and other frictions of the right side of

the road can be detected. Regarding PTWs, evidence on the

filtering phenomenon is provided as they perform more lane

changes as a consequence of small lateral deviations in the

borders between lanes. Their distinct driving behavior is further

presented as these lateral deviations resultin a higher average

lateral distance traveled with respect to cars and taxis.

Then, vehicles are split according to their destination to account
for the differences between left-turning, right-turning, and
straight vehicles. The study on lane choice highlights the dif-
ference in behavior for left- and right-turning vehicles as well
as the importance of preemptive changes in an urban context.
Left-turning vehicles do not interact with the friction elements
on the right part of the street and can afford to anticipate the
turn much before than right-turning vehicles. The left-turning
vehicles analyzed performed a smooth transition towards the
turning lane. Furthermore, a big proportion of the vehicles an-
alyzed never performed a lane change and they drove always
on the target lane to turn.

Those that joined the turning lane along did it at their convenience
and at their desired speed -speed distribution at the last lane
change is higher than for vehicles turning right-. In contrast,
right-turning vehicles present a variety of situations heavily
influenced by the context of the street. Indeed, the last
change before the turn is heavily triggered by the presence

of buses and the lane blocks in the rightmost lanes. Distributions
show that vehicles waiting to join a right-turning lane in the
last moment had higher lateral acceleration and were forced
to reduce their speed. With regards to straight vehicles, they
tended to drive in the central and left lanes trying to avoid the
frictions of the right lanes. The lane changes they perform are
exclusively to overtake other vehicles and improve their driving
conditions. Only 14% of the straight sample never changed a
lane.

The findings that are presented in this study provide a significant
contribution regarding the lane choice process of drivers in an
urban environment. Future research attempts will aim to use
the results on lane changing and lane choice to develop models
that predict the driver's intention to turn. This will allow to better
understand and differentiate turning and straight vehicles.
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Ma tn ouyypadn Tou mapoévtog apBpou, anovepnBnke otn NEa epeuvntpia
EVa Mwedapdkn to BpaBeio yia tnv Kadutepn Emotnpovikn Epyaacia otnv
0&1n Aodaneia katd tn di1apkeia tou 10°° DieBvoug Zuvedpiou yia

v ‘Epeuva otic Metadopeg (ICTR 2021)

Modelling the Safety Tolerance Zone:
Recommendations from the i-DREAMS project

Eva Michelaraki'’, Christos Katrakazas? Tom Brijs®, George Yannis*

ABSTRACT

The i-DREAMS project aims at defining, developing, testing and
validating a "Safety Tolerance Zone" (STZ) in order to prevent
drivers from getting too close to the boundaries of unsafe operation
by mitigating risk in both real-time and post-trip. The aim of the
current study is to provide guidelines for mapping the concept of
the STZ using continuous variables of risk and the most reliable in-
dicators (e.g. time headway, speed, harsh acceleration, distraction)
are going to be investigated in real-time. For the purpose of the
analysis, a variety of analytical methods and potential modelling
approaches are proposed. According to the research question
made, a mapping exercise of machine learning algorithms (e.g.
Long Short-Term Memory or Dynamic Bayesian Networks) is im-
plemented for real-time data prediction. The key output will be the
correlation of the aforementioned explanatory variables and various
indicators of task complexity and coping capacity with the dependent
variable risk.

Keywords: (-DREAMS project, safety tolerance zone, mapping
methodology, continuous risk indicators, real-time prediction.

MEPIAHWH

To épyo i-DREAMS otoxeUel atov opiop6, tnv avdntu€n, tn dokiun Kai
v enikipwan tou "elpous avoxns acgadeias” (STZ), date va ano-
¢peuxBei n unepfoAikn andkiion twv odnywv and ta 6pia ns
acpadoUs Aeitoupyias, peiivovias tov kivbuvo 1600 o€ npaypatikd
xpdvo 600 Kai petd to 1agidi . Ltéxos tns napoloas pedéns eival va
napéxel odnyies yia tn xaptoypapnan tns évvoias tns STZ xpnaiyo-
noiwvtas ouvexeis petaBAntés kivbuvou kai ol mio afidniotol deiktes
(n.x. anéotaon nponopeudpevoU oxNpatos, taxutnta, andtopn eni-
tdxuvon, andonacn npoooxns) Ba SiepeuvnBolv oe npaypatkeé
xpévo. la tov okoné autd, npoteivovtal apketés péBodor avanuans
ka1 npooeyyioels povieflonoinans. IOPQwWva Je TS EPEUVNTIKES EPW-
thaels nou npaypatonomBnkav, sidpopor adydpiBuol pnxavikns pd-
Bnans (n.x. Long Short-Term Memory n Dynamic Bayesian Networks)
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epappédovial yia tnv npéPAeyn dedopévwv oe npaydatko xpovo.
To Baoiké anoténeopa Ba eival n guoxétion Twv NpoavapepOeEVWY
enegnynyatk@yv PetaBAntav Kal twv deiktdv noAundokétntas nou
oxetiCovtal pe tnv 0dnynon pe tov e§aptpevo kivouvo.

Aé€ets - kedid: Epyo i-DREAMS, edpos avoxris aopaneias, ueBododoyia
xaptoypdgnans, belktes Kivbuvou, npdPfAeywn oe npayuatso xpovo.

1. INTRODUCTION

The overall objective of the European H2020 i-DREAMS' project is
to define, develop, test and validate a context-aware safety
envelope for driving in a ‘Safety Tolerance Zone' (STZ), with a smart
Driver, Vehicle & Environment Assessment and Monitoring System.
Taking into account, on the one hand, driver background factors
and real-time risk indicators, and on the other hand, driving task
complexity indicators, a continuous real-time assessment will be
created to monitor and determine if a driver is within acceptable
boundaries of safe operation (i.e. Safety Tolerance Zone). Testing
and validation will be applied to car, bus and truck drivers as well
as to tram and train drivers.

Within a transport system, a driver can be regarded as a human
operator (technology assisted) self-regulating control over trans-
portation vehicles in the context of crash avoidance. The concept
of the STZ within the i-DREAMS platform attempts to describe short
of the range at which self-regulated control is considered safe. It
is based on Fuller's Task Capability Interface Model (Ray Fuller,
2000, 2005, 2011) which states that loss of control occurs when
the demand of a driving task outweighs the operator's capability.

The STZ contains three phases: normal driving phase, danger phase
and avoidable accident phase. Firstly, the normal driving refers to
the phase where conditions at that point in time suggest that a
crash is unlikely to occur and therefore the crash risk is low and
the operator is successfully adjusting their behavior to meet task
demands. Fundamental goal of the i-DREAMS platform is to keep
drivers within this normal phase. Secondly, the danger phase is
characterized by changes to the normal driving that suggest a
cash may occur and therefore, there is an increased crash risk. At
this stage a crash is not inevitable but becomes more likely. The
STZ switches to the danger phase whenever instantaneous meas-
urements detect changes that imply an increased crash risk.
Lastly, the switch to avoidable accident phase occurs when a
collision scenario is developing but there is still time for the
operator to intervene in order to avoid the crash. In this phase, the
need for action is more urgent as if there are no changes or
corrections in the road or rail traffic system or an evasive manoeuvre
is performed by the operator a crash is very likely to occur.

It should be mentioned that the i-DREAMS platform is composed
of two modules. The first is the monitoring module that takes
measurements relating to the "context" (i.e. environment including
infrastructure), "operator” (i.e. driver state and demographic char-
acteristics) and "vehicle" (i.e. technical specifications and current

state). These "Context - Operator - Vehicle - COV" measurements
are used to infer the demands of the driving task (i.e. task
complexity) and the driver's capability to cope with these demands
(i.e. coping capacity). These inferences on its turn are used to
estimate in which phase within the STZ the driver is operating
within at each moment in time. The second module is the in-
vehicle intervention module, that is responsible for keeping the
driver within the normal phase of the STZ all the times, either by
providing a warning or instruction during driving (real-time inter-
vention) or providing information with detailed feedback on the
trip as well as improving their performance once the driving task
has ended (post-trip intervention). The STZ phase, within which
the driver is operating, dictates the type of real-time intervention
that is delivered. In the normal driving phase, no intervention is
needed. If it is detected that a driver has entered the danger
phase, a warning or advice should be given. Entering the avoidable
accident phase also requires an intervention, but this may need
to be more specific and provide an instruction signal, which impels
the operator to take a decisive action.

The conceptual state of the STZ changes dynamically depending
upon changes in the driving conditions or system of which the op-
erator is an integral part. The drivers' self-regulated control has
many influences, one of which is the driver's own perception of
the driving conditions. Drivers seek to maintain a level of risk that
they are comfortable with and continuously adapt their behavior
to achieve the subject to a complex network of underlying
motivations, not all of which relate to safety. This implies that
drivers may choose to intentionally behave in a way that objectively
would be considered unsafe (i.e. travelling close to a vehicle
ahead). Adriver's subjective appraisal of risk does not necessarily
therefore correspond to that calculated with objective measures,
nevertheless the driver would still be classed as operating within
the danger or avoidable accident phases of the STZ (Ray Fuller,
2011).

Itis worth mentioning that data analysis consists a pivotal part of
this project for achieving its objectives and the methods for data
analysis highly depend on the collected data. In order to model
the STZ, the available data as well as the potential outcome of the
model need to be considered. For suggesting a positive outcome,
the data to be used as input for the model will be available in real-
time, as the measurements of task demand (e.g. road layout,
weather conditions, time of the day) and coping capacity (e.g.
fatigue, distraction, sleepiness) are going to be sequential. Fur-
thermore, as the STZ is the “trigger” for real-time and post-trip in-
terventions, the algorithm outputs are required also to be provided
online as in real-time and hence both dynamic and static modelling
approaches need to be considered. Distinguishing between the
three levels of STZ (i.e. normal driving, danger and avoidable
accident phases) in real-time, turns STZ modelling into a ternary
classification problem, where raw measurements need to be
classified as belonging to one of the three existing levels. This
classification problem however implies that the feed to the training
part of these algorithms needs to be conveniently labelled.

" Further general project information can be found on the website: https://idreamsproject.eu
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Within, the above framework, the aim of the current study is to
provide guidelines for mapping the concept of the STZ using con-
tinuous outcome variables. The overall objective is to further
elaborate on the analytical methods and modelling options, their
strengths, limitations and applications in i-DREAMS. Particular
focus will be given in continuous variables of risk and the most
reliable indicators are going to be investigated in real-time. For in-
stance, time headway, speed, acceleration, deceleration, distraction,
fatigue or sleepiness consist some of the continuous variables in
order to model the concept of the i-DREAMS project.

The paperis structured as follows. In the beginning, the overall ob-
jective of the i-DREAMS project as well as the aim of this research
is provided. Subsequently, a thorough literature review of models
dealing with driver behavior and collision risk modelling in real-
time are provided. Then, the most prominent approaches are
detailed analyzed and a brief description of their underpinning
procedure is given. Additionally, initial insights into analyses and
results for real-time purposes are presented. Lastly, overall con-
clusions as well as practical considerations concerning the modelling
of the STZ are highlighted in order to assist researchers and prac-
titioners.

2. BACKGROUND

Predicting driving behavior by employing mathematical driver
models, obtained directly from the observed driving-behavior data,
has gained much attention in literature (Girma et al., 2019; Kkanaan
et al.,, 2019; McDonald et al., 2019; Xue et al., 2019; Zou et al,,
2018). Several models have been used to address road safety and
the estimation of driving behavior, many of which in the context
of experimental studies, including driving simulator studies and
field operational trials and/or naturalistic driving studies. The aim
of this section is to examine different models as well as methodologies
thatinclude the relationship and interaction between task demand
and coping capacity. both static and dynamic state-of-the-art ap-
proaches that could be employed to convert driving behavior data
into meaningful STZ information are reviewed. The most suitable
models, able to estimate driving behavior and crash risk will be
employed for the scope of the i-DREAMS project. Literature was
searched within popular scientific databases such as Scopus, Sci-
enceDirect and Google Scholar. All studies were screened on the
basis of their title and abstract in order to select the studies
presented in the following review.

2.1 Bayesian Networks

Inrecent years, BNs have been quite popularin modelling massive
amounts of data with the need for data aggregation and model
flexibility (Li etal., 2014; Tandon et al., 2016). LefBvre etal. (2012)
proposed a DBN which focused on intersection accidents caused
by driver errors. Their approach was formulated as an inference
problem where intention and expectation were estimated jointly
for the vehicles converging to the same intersection and the
proposed solution was validated by field experiments using
passenger vehicles. The results demonstrated the ability of the al-
gorithm to issue a warning in dangerous situations, and the benefits
of taking into account interactions between the vehicles when
reasoning about situations and risk at road intersections. The use

of the Bayesian formalism allowed to take into account uncertainties
on the relationships between the variables. The intuitive formulation
of risk provided the required flexibility for safety applications
relevant to both ADAS and autonomous driving. However, information
about drivers' actions, such as steering angle and pedal pressure
were not taken into account.

In addition, Zhu et al. (2017) utilized a hierarchical BN model to in-
vestigate the relationship between observed vehicle motion and a
driver's historical crash involvements through the hidden layers
of driving behavior and crash risk. The results suggested that the
contextual model performs significantly better than the non-con-
textual model. The method was also effective in handling massive
trajectory data and flexible in the data aggregation process.
However, the contextual indicators have been more comprehensive
by including more variables beyond current roadway type, traffic
and relative speeds.

Katrakazas et al. (2019) developed a new risk assessment method-
ology that integrates a collision risk network-level (CRN) with
collision risk vehicle-level (CRV) estimates in real-time under the
joint framework of interaction-aware motion models and DBN.
Results indicated an enhancement of the interaction-aware model
by up to 10%, when traffic conditions were deemed as collision-
prone. The network-level collision information could assist not
only the identification of “dangerous” road users but also act as a
safety net for all the motion planning levels and is suitable for
Connected and Autonomous Vehicles (CAVs). It is however noteworthy
that the extracted probabilities for all the scenarios were not suf-
ficiently high and the scenarios were built on some assumptions
and without highly detailed vehicle-level data.

The work by Shankar et al. (2008) pointed out that hierarchical
DBN can be used to reflect how driver decisions are made: driver-
level predictors, such as years of driving, can be used to parameterize
the effects of event attributes and context. There were found
some advantages related to parameter uncertainty, sample
specificity and extensibility to large data sets, which can capture
driver differences over time and space, but non automated storage
of data through the DAS with a flag for potential risk was identi-
fied.

2.2 Clustering Models

Clustering techniques have been used by researchers to categorize
drivers who are compliant and non-compliant. Xue et al. (2019)
developed a driving style recognition method (safe, low-risk, high-
risk, dangerous) based on vehicle trajectories from video recordings
and k-means clustering, failing however to take into account road
conditions and traffic flow levels. An individually-tailored, real-
time feedback-reward system for in-vehicle interventions was in-
stalled in driver's own vehicles and its effect was researched in a
field trial with 37 participants by Merrikhpour et al. (2014). Drivers
were clustered by compliance rate, pre and post interventions, in
more speed and headway compliant and less speed and headway
compliant and the results showed that speed limit and headway
compliance increased with post-intervention in the non-compliant
group. However, itis not clear if the observed benefits were due to
either feedback, or reward, or the unique combination of both. The
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study by Wang and Xu (2019) using SHRP2 data followed a two-
level approach; first, a K-means algorithm was adopted to classify
drivers into groups of high, moderate or low risk level and second,
logistic regression models for each risk group indicated the
probability of each driver getting involved in an incident. Drivers
themselves participated in this study by validating any traffic
event using anin-vehicle event button and by self-assessing their
behavior due to inattention and inexperience errors.

2.3 Fuzzy Logic Models

Machine learning techniques have been used in primarily traffic
flow modelling and second in road safety analysis. Imkamon et al.
(2008) proposed a new Fuzzy Logic inference system which can
record driving events, detect unsafe or risk driving behavior and
classify levels of hazardous driving by employing data from sensors
that measure three different perspectives (an ECU reader, an ac-
celerometer, and a camera). The test results showed that the
system can perform well compared with human opinions. However,
the current system had a limitation of day-time operation due to
constraints. In addition, Chong et al. (2013) trained a fuzzy rule-
based neural network to model the acceleration of a car-following
vehicle. Fuzzy logic was used to discretize traffic state and action
variables and reinforcement learning was used for the neural
network to learn driving behavior from naturalistic data. On the
one hand this paper showcased the application of fuzzy rules on
continuous variables with high R-squared values, but on the other
hand the choice of model parameters and the number of car-
following events were limited (ten in total). Fuzzy deep learning
was also applied for traffic incident detection (El Hatri and Boumbhidi,
2018), where the authors performed a comparison of machine
learning models based on MSE with detection rate and mean time
to detection as criteria. Their implementations showcased a high
detectionrate, low false alarm rate and a back-propagation feature
to adjust the parameters in the deep network, although model val-
idation was done on highly artificial street network and incident
occurrences. The standard deviation of detection time was not
given, indicating questionable potential for applying this algo-
rithm.

2.4 Hybrid Input Output Automaton

According to Bouhoute et al. (2014), a Hybrid Input Output
Automaton (HIOA) is a formal model that used to describe discrete
and continuous behavior of a system. A driver-centric approach to
model risky driving behavior in vehicular ad hoc networks was pro-
posed. Their advantage consisted of providing a better analysis of
hybrid systems. The constructed automaton corresponded to the
supposed behavior of the driver in one trip, exploration of other
states possible in next trips. The goal of the proposed example
was to illustrate the idea of the modelling approach and how it
can be applied. Consequently, despite the constructed model may
be useful to predict the driver behavior in the future, prevent
unsafe situations and provide more comfort to the driver, the im-
plementation of the model and the learning process have been
notimplemented yet.

2.5 Long Short-Term Memory Models

Girma et al. (2019) proposed deep learning-based models, called
LSTM models, to predict and identify drivers based on their
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individual's unique driving patterns based on vehicle telematics
data. Results showed that the proposed model prediction accuracy
remained satisfactory and outperformed other approaches despite
the extent of anomalies induced in the data. Even underincreasing
noise and outliers' effect, the proposed approach maintained its
accuracy above the acceptable value, 88%, while other models’
accuracy fell below 40%. Neural network-based models such as
LSTM performed better than Fully Connected Neural Network
(FCNN), Decision Tree (DT) or RF, by avoiding over-fitting on the
noise. Bao et al. (2019) trained a spatiotemporal convolutional
LSTM network to determine a crash risk scale and to calibrate a
crash risk alarm threshold. Their data comprised large-scale taxi
GPS data, population data, weather and land use features, and
they were used to compare econometric and machine learning
models. Econometric models performed better than machine-
learning models in weekly crash risk prediction tasks, while they
exhibit worse results than machine-learning models in daily crash
risk prediction tasks. However, because taxi trips were not repre-
sentative of the general mobility patterns in a city, this study
entails a significant sample bias problem.

2.6 Recommendation

With regards to safety and risk level, several models and method-
ologies have been examined. From the aforementioned approaches
examined, DBNs were found to be the most effective and extensible
in handling massive trajectory data, as well as flexible for safety
applications in the data aggregation process (LefBvre et al., 2012;
Shankar et al., 2008; Zhu et al., 2017). The use of the Bayesian for-
malism allowed to take into account uncertainties on the relationships
between the variables (LefBvre et al., 2012). However, variable
selection, assumptions and non-highly detailed vehicle-level data
were found to be some of the shortcomings of this approach (Ka-
trakazas etal., 2019). Lastly, LSTMs revealed the highest accuracy,
compared with other models examined. Specifically, the proposed
model maintained its accuracy above the acceptable value 88%,
while other models' accuracy fell below 40%. LSTM had an inherent
ability to remember temporal information in data and conserve it
for many time steps, unlike other conventional machine learning
approaches (Girma et al., 2019).

3. METHODOLOGICAL OVERVIEW

According to the research question and hypothesis made, a mapping
exercise of machine learning algorithms was implemented for
real-time data prediction. It should be noted that the fundamental
research question within the i-DREAMS project is how explanatory
variables (i.e. various indicators of task complexity and coping ca-
pacity) are correlated with the dependent variable “risk".

Avariety of analytical methods and potential modelling approaches
has been reviewed, among which two methods have been selected
to be used in i-DREAMS: Dynamic Bayesian Networks (DBN) and
Long Short-Term Memory (LSTM) deep neural networks. Each of
these two methods has strengths and limitations, making it suitable
for a certain purpose in the project. Based on the methodological
background, an attempt was made to transform the model approach
into a suitable structure which will allow to response to the research
question made. The key output is expected to be the correlation of



the explanatory variables and various indicators of task complexity
and coping capacity with the dependent variable risk.

3.1 Dynamic Bayesian Network analytical approach

It is hypothesized that a situation is risky if the level of task
complexity is different from the level of coping capacity. For
example, if the driving is task is difficult and the operator state is
decreased, then risk is probable. In order to identify risk, the level
of task complexity as well as the level of coping capacity need to
be predicted and compared. As a result, the hypothesis forms a
real-time multi-level classification problem, where the dependent
variable takes the form of a category representing the difference
of task complexity and coping capacity. Task Complexity variables
(X1) and coping capacity variables (X2) can be used to identify in-
dividual levels of coping capacity and task complexity, and can
also be supplemented by other indicators to predict Y. The relationship
between the variables and their causal relationship can be depicted
in the following flowchart in Figure 1

Figure 1: The causal relationship between the variables of
task complexity and coping capacity

With regards to the model specification, the raw sensor measure-
ments will be observed. By filtering these raw measurements, the
COV indicators will become available, so they will be used to
determine the coping capacity and task complexity at each time
moment. Hence, the two layers of coping capacity and task com-
plexity depend on the COV indicators. Finally, as the operator's ca-
pacity indicates the ability of the driver to operate safely with
regards to the task imposed, the operator's capacity depends on
the complexity of the task. The proposed DBN structure along with
the proposed characteristics to estimate task complexity and
coping capacity is depicted in Figure 2.

Figure 2: The proposed DBN for STZ modelling

The proposed DBN can be described by the joint distribution:

(1)

where:

o TC: Task Complexity

o CC: Coping Capacity

o FM:Filtered COV Measurements
e Z:Raw measurements

e t:current time step

o T:Total time of measurements

The expected task complexity is derived
from the previous task complexity and the available indicators on
environment variables (i.e. time of day, wipers on/off, low visibility
indicator, road environment, road geometric configuration and
traffic density).

(2)

Coping capacity can be estimated
through functions that correlate the effect of task complexity on
coping capacity (Faure et al., 2016) modified by a factor to take
the previous coping capacity into account.

(3)

The filtered measurements is the
probability of the indicator values based on the current task com-
plexity and coping capacity as well as their previous values and
the previous coping capacity can be mapped based on the specific
scenarios that will be tested in the simulators. In that way, specific
ranges of values or task complexity - and coping capacity-specific
measurements along with their corresponding probabilities of ap-
pearance can be identified.
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For the probability of the raw measurements P[Zt IFMt] a sensor
model based on Agamennoni et al. (2011) and the Student t-dis-
tribution can be followed. In order to identify the different STZ
levels, a comparison between the layers of task complexity and
coping capacity will be made. The following probability is proposed
to be inferred in order to identify avoidable accident or dangerous
STZ levels. It should be mentioned that this probability refers to
situations that task complexity and coping capacity are beyond
normal operations (i.e. increased or high task complexity with de-
creased or low coping capacity) given the available sensor obser-
vations.

(4)

Examples of the different STZ levels according to task complexity
and coping capacity are highlighted in Table 1. It can be observed
that low coping capacity leads to avoidable accident or dangerous
phase, decreased coping capacity leads to dangerous or normal
phase, while high coping capacity leads to Normal phase, regardless
the other layers of task complexity.

Table 1: Different STZ levels according to task complexity
and coping capacity

The likelihood function for Bayesian Networks is the same as in
the frequentist inference. More specifically,

(5)

where:

e Xxiis the covariate vector

¢ n(xi)is the probability of the event for the i*" subject which has
covariate vector xi

e yiisthe multiple dependent variable representing the risk prob-
ability which has the outcomes y=0 (STZ: Normal Phase), y=1
(STZ: Dangerous Phase) and y=2 (STZ: Avoidable Accident Phase)

The logistic regression equation is:

(6)

where:
* Byis the intercept
e fi is a coefficient for the explanatory variable xi

In addition, similarly to the frequentist approach, taking the exp(B)
provides the odds ratio for one unit change of that parameter.
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3.2 Long Short-Term Memory analytical approach

With regards to the modelling approach, it is assumed that there
is a specific risk factor (i.e. task complexity or coping capacity)
along with the corresponding measurements and metrics for each
variable. At each time, a specific risk factor (i.e. STZ levels of each
risk factor are known) is targeted but other important variables
(e.g. weather conditions, distraction, etc.) can also be used in the
same model in order to make the prediction. The entire dataset
will be split into train and test set. Based on these indicators,
there is a need to predict the risk, and therefore, the time spentin
each STZ level (i.e. normal, dangerous, avoidable accident). The
problem is a real-time regression problem and can be solved by
the LSTM formulation. In order to make sure that the risk calculated
is reliable, a good level of forecast accuracy for all the STZ levels
should be performed. For instance, if a good prediction for the
"avoidable accident” phase can be produced, it should be made
clear that a good prediction for the “normal” phase, can be produced
as well. This implies that the level of the STZ should be known be-
forehand, otherwise this hypothesis needs to be supplemented
by a classification problem or a clustering one. The flowchart as-
sociated with this hypothesis is shown in Figure 3.

Figure 3: The proposed LSTM for STZ modelling

With regards to the second proposed LSTM model, the problem of
defining the STZ levels becomes more straightforward, since LSTMs
as a sub-category of Deep Neural Networks act like “black-boxes”
(Xu et al., 2013) and thus the only input that needs to be provided
to the model are labelled time series data. The proposed approach
using LSTMs is given in Figure 4.

In the proposed solution with LSTMs, historical sensor data will be
used to extract and select features of the measurements to obtain
the most important for STZ level detection. Afterwards, the most
important measurements for monitoring the environment the



vehicle and the driver become the input to an unsupervised learning
algorithm that will group together measurements according to
task demand and coping capacity, which, in turn, will act as input
for training the LSTM model. After training the LSTM model with

the labelled time-series data, the available real-time sensor data
will be used as input for the model to predict the STZ level in the
subsequent time.

Figure 4: STZ modelling using LSTMs

4. RESULTS

In order to model the concept of the i-DREAMS project several pa-
rameters were examined. Particular emphasis was given to aver-
age speed and a new variable was created taking into account
the different levels of STZ. Thus, the dependent variable was the
STZ_speed which was divided into three levels (i.e. normal
phase:0, dangerous phase: 1, avoidable accident phase: 2). Then,
the correlation of the independent variables

Table 2: Correlation of independent variables

(i.e. TTC — time to collision with vehicle ahead, Headway - time
headway to vehicle ahead in same lane, Distance travelled - dis-
tance driving, HandsOnEvent - whether hands are on the steering
wheel, FatigueEvent - KSS score, ME_ForwardCollisionWarning -
whether forward collision warning is active and ME_LaneDepar-
tureWarningActive - whether lane departure warning is active)
was investigated. No strong correlation among these indicators
was identified, as shown in Table 2.
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A feature importance algorithm extracted from XGBoost was used
in order to evaluate the significance of variables on forecasting
STZ and select the most appropriate independent variables.
Headwauy, distance travelled and TTC were the most important
factors of all examined indicators, while the parameters of for-
ward collision warning and lane departure warning active were
less significant. Table 3 provides the feature importance of inde-
pendent variables based on XGBoost algorithm implemented.

Table 3: Feature importance of independent variables

A short dataset of 10,000 rows was used and a Neural Network
model was implemented. As presented in Figure 5, in this study,
there are three neurons in the input layer (i.e. headway, dis-
tance.travelled, TTC) and one neuron in the output layer (STZ).

Figure 5: The multi-layer Neural Network model layout for STZ

Then, a table of confusion which contains two rows and two
columns that reports the number of false positives, false nega-
tives, true positives, and true negatives was created. This allows
more detailed analysis than mere proportion of correct classifi-
cations (e.g. accuracy). In particular, negative class refers to the
Normal phase, positive class refers to the Dangerous phase, while
no instances for Avoidable Accident Phase were detected, as
shown in Table 4.

Table 4: Confusion data matrix

With regards to the assessment of classification model, average
classification accuracy represents the proportion of correctly
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classified observations, while precision, recall and specificity,
which are three major performance metrics, describe a predictive
classification model. F1-score is calculated in order to find a bal-
ance between precision and recall. The geometric mean G-mean
is a product of the prediction accuracies for both classes, i.e re-
call: accuracy on the positive examples, and specificity: accuracy
on the negative examples. Lastly, the false positive rate refers
to the expectancy of the false positive ratio (i.e. the probability
of falsely rejecting the null hypothesis for a particular test). Table
5 provides the assessment of classification model.

Table 5: Assessment of classification model

5. CONCLUSIONS

Following a thorough literature review of models dealing with
driver behavior and collision risk modelling in real-time, the most
prominent approaches were found to be Dynamic Bayesian Net-
works or DBNs (a probabilistic graphical time-series model) and
Long Short-Term Memory networks or LSTMs (a deep neural
network formulation). These two dynamic approaches were
chosen due to their efficiency and flexibility in real-time predictions
and were found to be suitable for prediction of continuous
indicators of risk (e.g. fatigue, speed, time headway, distraction,
harsh acceleration). Such a continuous indicator of risk may be
the result of combining discrete indicators of risk for different
risk factors (which will help validate STZ) or may be the time
thatis spent in each phase of STZ (which will help tuning the fre-
quency/pitch/presentation of warnings).



While the review of the analytical methods presented previously
provided a good understanding of the potential modelling can-
didates in i-DREAMS and the final selected methods seem plau-
sible, there are still some open issues that need to be considered
for model selection. For example, the suggested methods may
be confronted with additional limitations considering the ongo-
ing discussions on the different types of data being collected in
i-DREAMS. In addition, a number of new limitations have been
identified with additional deeperinvestigations into these meth-
ods. For example, itis noted that LSTM is not able to incorporate
the inter-relationship between variables into real-time predic-
tions.

Preliminary results indicated a strong relationship between STZ
and the independents variables of headway, distance.travelled
and TTC. However, it should be highlighted that when more data
are available, the most crucial risk indicators of task demand
and coping capacity will be extracted and the initial hypothesis
described in the paper will be confirmed.
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EniBAénwv KaBnynths
Eknaideutiko idpupa
Eidos epyaaias

Aikatepivn IkAidun

lewpyios Mavvis, KkaBnyntis EMI

EMM - IxoAn MoArukwv Mnxavikwv

Ma tnv anéktnon MpontuxiakoU AinAwpatos

IYTKPITIKH ANAAYIH XAPAKTHPIETIKON OAIKQN ATYXHMATAQN ANA EBNIKOTHTA
0AHIOY ITHN EYPQMAIKH ENQXIH

NepiAnyn Epyacias

Itéxos tns napouaas AinAwypatkis Epyaacias €ival n ouykpItkn
avdiuon twv XxapaktnPIoTIKWV TV 081Kkwv atuxnpdtwy yia us dia-
Qopetikés eBvikdTNTES Bavéviwy 0dnywv otnv Eupwnaikn Evwon,
HE Th XpNon OTaTUCTIKWV HOVIEAWV.

Tov kaBopiopd tou enidiwkdpevou atdéxou akofouBnae n Bipdio-
ypagikh avackénnan, otnv onoia avadlBnkav ta anotedéopata
OUVaQ®V EPEUVMV UE T0 avukeipevo ths napoloas AinAwpatikis
Epyaaias, 1600 oe €Bvikd, 600 kal Eupwnaiké kal naykéopio
eninedo. Na tov apiBud twv Bupdtwv and odikd atuxhuata, ta
otoixeia aviAnBnkav ané tnv Eupwnaikh Bdon dedopévav odikmv
atxnpdtwv, CARE. (s nepiodos penétns opiotnke n dekaetia 2008-
2017.Tn ouddoyn twv dedopévwv akoolBnaoe n ene€epyaaia kai
kwdikonoincoh tous wate va elcaxBolv oto €181ké oTaTIOTIKG
AoyiopIko.

‘Evas enindéov dlaxwpiopds nou npayuatonoinBnke, apopouce

ota Bépeia kai Néua kpdtn tns Eupwnaikns Evwons. la tn otauoukn
avdiuon twv gtoixeiwv eninéxBnke n Apvnuki Aiwvupikh Mafiv-
&pépnon. Ta tefikd paBnpaukd poviéAa nou Npoékuyav anotunwvouv
I auoxétion peta€l tns eaptnpévns petaBantis (apiBuds vekpdv
08nydv) kal twv napayéviwv nou thv ennpeddouy.

Ta yevikd gupnepdopata cuvoyidovtal ws egns:

1. Ita kpdtn tns Eupwnaikns Evwans n €Bvikétnta tou onyou
ennpedlel otatiotikd onpavtikd tov apiBpé Twv vekpwV ota
001kd atuxhpata, evbexopévws 816t o1 §€vol obdnyoi dev eival
1600 e€oikelwpévol pe TNy TonIkh kukiogopia 6ao eival o1 vidniol
odnyoi kal niBavaws npocapuddovial Suckondtepa kal kdvouv
nepiogdtepa A4GBn.

2. 01 Baoikoi napdyovtes enippons twv 0dIk®V atuxnudtwy nou
Slapoponoiolv ta 0dikd atuxnpata vidniwv kai §évav odnywv
eival katd oelpd onoudaidétntas 1o UAo Tou 0dnyoU, o TUNos TNs
NEPIOXAS TOU ATUXNPATos, 0 TUnos Tou epniekOUEVOU OXANATOS,
0l Kalpikés ouvBnkes Kal 1€A0s ol oUVBAKES PWTICUOU TOU atu-
XAHQTOS.

3. H enippon tou ¢UGAou Tou 08nyoU atov apiBuo Twv vekpwy eival

peyandutepn otous vidnious odnyoUs and éu otous Eévous.

4. H emippon tou Tinou tns NEPIOXAS TOU ATUXAPATOS atov apiBud
WV VekpWV eival peyandtepn atous §évous obdnyols and 6t
otous viénious odnyous.

5.01 kaipikés guvBNKES TNV KIPA TOU atuxnpatos €xouv peyandtepn
enippon otov apiBuéd twv vekpwv atous E€vous odnyols ané éu
0T0US VIdnIous.

6. H enippon twv ouvBnKwv QwTIcHOU Thv MpaA TOU ATUXAPATOS
eival peyadutepn yia tous §évous odnyols and éu yia tous
vténious odnyous.

7. H enippon tou Tinou Tou ePnAEKOPEVOU OXAPATOS eival peyaiutepn
yla tous E€vous odnyoUs oe oxéan pe tous vidnious odnyous.
LuyKekpIPéva n XpAon Twv Pnxavokivntwy SikUkAwv ennpedlel
oe peyandtepo Babud tous E€vous odnyous and du tous vidnious,
niBavas &16u o1 §évol odnyoi npocappdlouv duckoddtepa tnv
0dAynon twv JOTOCUKAETWY OIS ToMIkEs ouvBhKes Kukogo-
pias.

8. H enippon tns xphans tou nodnAdrou atov apiBud twv vekpwv
eival yeyanutepn yia tous §€vous odnyoUs oe ox€on Pe TOUS Vi6-
nious odnyous, evbexopévws 816u ol E€vol nodnAdtes npooap-
péZouv duokoAddtepa tnv odnynon twv nodnAdtwy Tous aus
tonikés ouvBnkes KukAopopias.

9. A€loonpeiwto €ival enions nws pévo yia tous §évous odnyous
ous Bépeles xdpes o1 guvBhKes Kakokaipias odnyoUv ae aignon
T0U ap1Buol TwV vekpwV o€ 00IKA atuxnpata GUYKPITIKA PE TV
kandokaipia.

10. TéAos, cuvonikd, n enippon TnNs Xxphans tou nodniAdrtou ennpedel
Ayétepo tous vidnious odnyoUs ota Néua kpdtn tns EE oe
oxéan 1600 Je Tous vionious 600 kal pe tous évous odnyols
ota Bépeia kpdtn tns EE.

Livbeopos
https://www.nrso.ntua.gr/geyannis/edu/ad97-aikaterini-skliami-
comparative-analysis-of-traffic-accident-factors-per-driver-na-
tionality-in-the-european-union/
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EPEYNA AMTOAOXHX TON INTAMENQON AYTONOMON OXHMATQN ITHN EANAAA

NepiAnyn Epyaadias

Itoxos tns napoUaas AinAwpaukns Epyacias anotedei n Siepedvnon
s anodoxns 1wV INTGUEVWV autévopwv oxnpdtwyv atnv EAAdda,
kaBas kal n npéBean xpRaNs aUT@Y TV oxXnPAtwY, eved, napaninda,
kataypd@nkav ol anéyeis twv EAARvV®Y yia ta iIntdyeva autévopa
oxnyata kai ta mBavd xapaktnpiotkd tous afid Kai yia tnv Texvo-
AoyiknA Tous guveidnon.

la tov okond autd avalntnBnke BiBAioypapia oxeukn Pe 10 avu-
Keipevo tns épeuvas oe d1eBvés eninedo. Tautdxpova, anopaciotnke
n guAfoyh Twv anapaitntwy otoixeiwv va npaypatonoinBei péow
epwtnparofoyiou, oto onoio cupnepieAneBnoav &éka oevdpia
oUPQwva pe tn péBodo tns HednAwpévns npotipnons and ta onoia
o1 epwtnBévtes énpene va emAé§ouv petau piddv evaANakTK®V:
I.X., wa€i kai iIntdpevo autdvopo dxnpa.

Ta enpavukdtepa gupnepdapara nou npokuntouv petd v avanuon
Twv anoteleopdtwy s eQapuPoyns Twv JabBnuatikdy JoviéNwy
ouvowyi¢ovtai ota eEns onpeia:

e 01 ‘EAAnves otnv nieloyngia tous Qaivetal va diatnpolv pia
andépakpn atdon and v enidoyh xprhons tagi yia us JEakivioels
tous, adid eppavidovral Betikoi ws NPos ta INtdpeva autévopa
oxnpata, étav autd yivouv ¢Bnvd kar acpann. Eidikétepa, 600
e€oikovopeital xpévos ous petakivhaels n niBavétnta peAdovukns
enifoyns INtTduevayv autévopwyv oxnpdtwy augdvetal kal yia
xapnid kéotn Eenepvdel kai ekeivn tns emdoyns 1.X.

e H emidoyn intdpevou autévopou oxnuatos e§aptdtal and to
K60T0S, TOV XpOvo Kal 1o eninedo dveons nou autd npoapépouy,
yeyovads nou enifeBaicdvetal kai and tn dieBvn BifAioypapia yia
v enifoyh péoou petakivnons. Kupidtepos aviaywviotns twv
INTGUEVWV autévopwV oxnpdtwv @aivetai va givai to |.X. Mapéia
autd, étav o xpdvos Kal To KOOTOS PETakivnons Napayévouy oe
xapnid enineda Kkai tautéxpova n dveon Kupaivetalr oe upnAd
enineda téte n mBavétnta xphons TV INTGUEVWV AUTOVOHWY
oxnpdtwv Eenepvd ekeivn tns xpnons 1.X.

¢ [ToAU onpavuké péio naigel n gtdon nou éxouv ol epwtnBévies
anévavu ota Intdueva autévopa oxnpata, apol N guvipINTUKA
nieloyngia ekeivawv nou eixav Beukn dnoyn kai Bewpoloav 6t
Ba xpnaiponololoav €va Intduevo autévopo 6xnpa ¢dvnke va
eniAéyouv nio ouxvd autd 1o €00 yia TS PHETAKIVATEIS TOUS.

* ‘Eva peydno pépos tou deiypatos diatnpei enipuAakukh otdon

anévavu atnv anodoxn twv INTAPEVWV QUTOVOPWY OXNPETWY
apou Bewpei 6u Ba eival Aiyétepo acpann and ta koivd oxnpara
s enoxns pas kai n nieioyngia tous SnAwvel 6u Ba nepipeve
va aioBavBei dveta péxpl va kavel xphon tous.

Ta otauoukd poviéda €dei§av 6u 6oo anpavtkétepn Bewpolv ol
epwTnNBEVIEs TNV AVEDN 0TS PETAKIVATEIS TOUS 1000 pEIdvoval
ol mBavétntes va emAé§ouv éva Intduevo autévopo 6xnpa évavt
tou |.X. tous.

‘0o nepiogdtepo onpavukn Bewpolv ol EAAnves tn Sidpkeia
OTS JETAKIVATEIS Tous t6oo auEdvovral ol niBavdtntes va emiié§ouv
éva Intduevo autévopo dxnua yia autés, katadeikvlovias 6t ta
Intdueva autévopa oxnuata iows va oupPdiouv onpavukd otn
peiwan tns B1dpKeEIas TV HETAKIVAGEWDY TOUS.

0r'EAANves nou aivetal va eival nio yuxpoi anévavu ous duva-
T6TNTES Mou npo@épovtal and us vées texvonoyies kal Hev ev-
Bouaidlovtal eUkona ané autés n eival adidgopol yia autés, ep-
¢pavifouv onpavukd peiwpéves mBavétntes va emiAé§ouv éva
INtduevo autévopo 6xnpa yia Us JETAKIVATEIS TOUS.

Avtigtoixa, 6001 xpnaoipgonololv véa texvonoyikd npoiéva, napdéno
10 UYnA G KOOTos Tous kai deixvouv egnigtoolvn atnv texvonoyia
Bewpwvias Nnws npooépel Nepioadtepes AUGEIS aTnv kaBnpe-
pivétnta tou avBpwnou ané éu npofAnpata éxouv nepiogdtepes
niBavdtntes va xpnoidonolnoouyv INTduevo autévopo éxnya.

01 peyanUtepol twv 55 et@v SnA®vouv xapnAdtepn npotipnan
ota Intdpeva autévopa oxfpata eva ol vedtepol (18-24) paivovial
noAu nio Beukoi anévavu otn xpAaon Tous.

01 epwtnBévies nou avhkouv oe NOAUPENE(S OIKOYEVEIES £XOUV
v t1don va eniAéyouv anaviétepa oIS HETAKIVAGEIS TOUS 10
INTdpevo autévopo 6xnpa.

To o1koyevelako €1066npa nailel enions péno atnv enifoyn twv
INTGUEVWV QUTOVOPWVY 0XNUETWYV. LUYKEKPIPEVA, 60WV TO OIKO-
YEVEIQKO €1060npa Kupaivetal oe péoa enineda (10.000-25.000
€UPW), £xouv Nepioadtepes niBavotntes va emA€ouy éva INtduevo
autévopo 6xnpa.

L]

Livéeapos
https://www.nrso.ntua.gr/geyannis/edu/ad98-george-priftis-inves-
tigation-of-flying-autonomous-vehicles-traveller-acceptance-in-
greece/
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O/ (AL S8 Me péBobo kal pe emipovh

10 nponyoUpevo xpoviko didotnpua o LEL evnpépwve
v noditeia oxeukd pe tnv avaykaiétnta tns Snpi-
oupyias MntponoAdiuikav Opyaviouwv MoAeodopias
kal Metagopdv (M0), kat' apxniv aus peydies néneis
tns EAAddas, péow ouvavinoewv kal Kelpévwy nou
avantixBnkav yia tov okond autd.

(s anoténeapa o Ynoupyos Ynodopwv kat Metapopwv
K. KapapavAins 6nws o idlos avakoivwoe dnpdaia,
uloBetei tnv npdtacn tou LEXY yia tn dnpioupyia evés
eviaiou popéa OXeUKd Pe TS PetaPopés atnv ATukA.
To 6no eyxeipnpa otnpidel kai o Ahpapxos ABnvaiwv
K. Mnakoyidvvns. H napandvw €§€AiEn eival idiaitepa
onpavukn, dedopévou du o Mntpononiukés Popéas
anotenei ndyia B€on tou LEX touAdxiotov ta teAeutaia
20 xpévia. Ta péan tou AL ekppdouv tnv Ikavonoinonh
ToUS apevos nou n npétaan tou Mntponodiukol opéa
uloBeteital and tnv noAreia kal apet€pou avayvwpidetal
n npoo@opd tou LuAddyou.

A CLINT 2 a1 BRI B Ta kukAo@opiakd npo-

BAnpata ato Aekavonédio tns Atukns Kai n eniotpoPn
Tou pétpou tou Aaktuniou ato kévipo tns ABAvas, avé-
de1§av onpavuka guykoivaviakd {nthpata kai Eépepav
oto enikevipo tov LuAdoyo kail ta péan tou. 0 XEL pe
ouvaigBnon tns peydins euBuvns Tou OTO va Cuvel-
OQEPEI TN XWPA Has PE ENIOTNHOVIKA TEKPNPIWHEVES
andyels, kaBnpepiva ouvopidodoe 1600 pe ta péAn
T0U 600 Kal Je Tnv nofiteia, EvnPEPWVOVIas 1autoxpova

Bavdons Toudvos
levikds Mpappatéas LEX

Kal TNV Kolvwvia péow Tns ouvexoUs napouaias Tou
ota M.M.E. tovi¢ovtas tnv éAdgiyn alid kai tnv ava-
yKkaidtnta tns €knévnons KUKAOPOPIAKWY PEAETWV
ous eAAnvikés noAels.

H noAiteia avayvwpi¢ovias tov Beopiké enigtnpoviko
péAo Kal tnv unevBuvn Kal AVUKEIPMEVIKA 0TACN TOU
YEY, tov kaBiotd Baciké ouvopiAnth yia tn Siapdppwaon
TOU OUCTAKATOS PETAPOPWV atnv ATtIKA O0€ ouvepyaaoia
pe 6ious tous euniekduevous gopeis (Ynoupyeia —
Nepipépeia — Anpot).

MPONGHIH 6EXEAN TOY ZEX - MMPOAIATPA®EL

To A.L. tou IEX o€ k@Be eukalpia npowBei us Béaoels
nou avéntwegav ol ematnpovikés enitponés tou. Enions
o0 LEX npowBei kpioiya ¢nthuata nou oxetidovial pe
tn BeopoBétnan tou péfou kal Tou avukeIpévou Tou
ouykolvwvioddyou, tnv avanwén kai BeopoBEtnan
npodiaypa@®yv dnws Mevikwv Medetdv Metapopay,
Kukiogopiakwyv Medetwyv, MeAetwy LtdBueuans, Me-
Aetwv Kuknogopiakwv Enintwoewv K.4. kaBws Kai
avaykaies enikaiponolnasls / 1pononoinaels ous ugl-
otdpeves npodiaypa@és kai atnv iIoxUouca vopoBeaia.
H avdntu€n olyxpovwy, Aentopepwyv, peanioukwy
ka1 euéAiktwv npodiaypa@dv (aviiotoIxwy n.x. e
auteV TV unéAoINwv eUpWNAIK®OV Kpatdv) Ba ev-
duvapwoel tov péfo tou cuykoivwviofdyou kal Ba
anoteAéael Tnv avaykaia ouvBAKN yia Tov pgetaoxn-
patuopé kai tn BeAtiwon tou cuothpatos Metapopwv
otnv EAAdda.

INANNHEI MATZAL eyypapetal pe AM. 876
MAYAOL TA®IAHL eyypagpetal pe AM. 877
AEXIMOINA KOYMENOY eyypdopetal ye A.M. 878
EAENH ANQYPKATH eyypdagpetal pe AM. 879
FEQPIIOL BAITEAAL eyypagpetal pe A.M. 880
HAIAZ MANATTQTOMOYAOL eyypagpetal pe A.M. 881
KAAMIPPOH MOP®YPH eyypdgpetal pe A.M. 882
FANNOYAA TZOBAPA eyypdgetal pe A.M. 883
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